INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

Edicley Vander Machado

SISTEMA DE MEDIÇÃO PARA DETERMINAR A INFLUÊNCIA DA VARIAÇÃO DO DIMENSIONAL DE BICOS CONTA-GOTAS NA VARIAÇÃO DO TAMANHO DA GOTA DE COLÍRIO

São Paulo – SP 2016

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

Edicley Vander Machado

SISTEMA DE MEDIÇÃO PARA DETERMINAR A INFLUÊNCIA DA VARIAÇÃO DO DIMENSIONAL DE BICOS CONTA-GOTAS NA VARIAÇÃO DO TAMANHO DA GOTA DE COLÍRIO

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo curso de Mestrado Profissional em Automação e Controle de Processos do Instituto Federal de Educação, Ciência e Tecnologia de São Paulo.

Área de Concentração: Controle e Automação

Orientador: Prof. Dr. Alexandre Simião Caporali

São Paulo – SP 2016

M13s Machado, Edicley Vander.

Sistema de medição para determinar a influência da variação do dimensional de bicos conta-gotas na variação do tamanho da gota de colírio / Edicley Vander Machado. São Paulo: [s.n.], 2016.

127 f.: il.

Orientador: Prof. Dr. Alexandre Simião Caporali.

Dissertação (Mestrado Profissional em Automação e Controle de Processos) - Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, IFSP, 2016.

Sistemas de medição
Conta-gotas – variação de abertura
Colírio - custo de tratamento
Visão computacional
I. Instituto Federal de Educação, Ciência e Tecnologia de São Paulo.
II. Título

CDU 681.0

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO CAMPUS SÃO PAULO DIRETORIA GERAL DO CAMPUS SÃO PAULO Coordenadoria de Registros Escolares de Pós-Graduação

ATA DE EXAME DE DEFESA DE DISSERTAÇÃO

Nome do Programa: Mestrado Profissional em Automação e Controle de Processos

Nome do(a) Aluno(a) : Edicley Vander Machado

Nome do Orientador: Prof. Dr. Alexandre Simião Caporali

Suplente do orientador: Prof. Dr. Alexandre Brincalepe Campo

Título do Trabalho: "Sistema de medição para determinar a influência da variação do dimensional de bicos conta-gotas na variação do tamanho da gota de colírio"

Abaixo o resultado de cada participante da Banca Examinadora

Nome completo dos Participantes Titulares da Banca	Sigla da Instituição	Aprovado / Não Aprovado
Prof. Dr. Alexandre Brincalepe Campo – Suplente do orientador	IFSP – SPO	APROVADO
Prof. Dr. Ricardo Pires – Membro Interno	IFSP – SPO	agno vado
Prof. Dr. Vagner Rogério dos Santos – Membro Externo	Unifesp	Aprovado
Nome completo dos Participantes Suplentes da Banca	Sigla da Instituição	Aprovado / Não Aprovado
Prof. Dr. Eduardo Alves da Costa – Membro Interno	IFSP - SPO	
Profa. Dra. Priscila Cardoso Cristovam – Membro Externo	Unifesp	

Considerando-o:

APROVADO

Assinaturas

São Paulo, 3 de otobro de 2016

- 0 Presidente da Banca

Ricardo, Pines Membro Interno

bro Externo

Observações:

"O futuro pertence àqueles que acreditam na beleza de seus sonhos."

Elleanor Roosevelt

DEDICATÓRIA

Dedico este trabalho aos meus pais, Nelson Luiz Machado e Diomar Alves Machado, que sempre me apoiaram e me ensinaram com todo amor, que um bom futuro só se constrói com dedicação e responsabilidade.

A minha esposa, Regiane Aparecida Bueno pelo incentivo e apoio por compreender a minha ausência durante a realização deste trabalho e em especial a filha Luísa que é o sentido desse trabalho.

AGRADECIMENTOS

Agradeço à Deus por tudo que têm realizado em minha vida, e por mais esta conquista.

Ao meu orientador Prof. Dr. Alexandre Simião Caporali, pela confiança e por contribuir com seus conhecimentos para realização deste trabalho.

Ao Prof. Dr. Vagner Rogério dos Santos que me incluiu no "Projeto Colírio" e por me auxiliar na execução do projeto, sem ele o tema desse trabalho seria outro.

A Pós-Dr. Priscila Cardoso Cristovam, por me apoiar com os testes no Centro Avançado de Superfície Ocular (CASO) e na revisão do trabalho e do artigo.

Ao Prof. Dr. Alexandre Brincalepe Campo que me acompanhou e auxiliou na reta final da defesa.

Ao Prof. LD. José Alvaro Pereira Gomes por apoiar o Projeto Colírio.

A UNIFESP por ceder o laboratório do CASO e seus equipamentos.

Ao Prof. Dr. Ricardo Pires pela revisão aprimorada da dissertação.

A todos que participaram do Projeto Colírio e que de forma direta ou indireta, contribuíram para a realização e divulgação deste trabalho.

A Omron Brasil por ceder o seu laboratório de automação e equipamentos e aos Eng. André Wentzcovith e Renan Hidani pelo apoio com os testes com sensor laser.

Ao meu sogro Sr. José Bueno, que me apoiou e incentivou na confecção dos dispositivos de teste, sempre compartilhando a sua técnica e experiência.

RESUMO

No tratamento de doenças oftalmológicas crônicas, faz-se necessário uso de medicação via tópica com a aplicação de solução oftálmica aquosa. A forma preferida de dosagem de fármaco, continua sendo instilar gotas de colírio no interior do saco conjuntival inferior. A aplicação de colírio é conhecida como problemática em virtude da variação no tamanho da gota relacionada a capacidade da área pré-corneal de 20µl. O excesso de colírio gera desperdício de fármaco, consequentemente, aumento no custo do tratamento e risco de efeitos adversos devido a absorção sistêmica via mucosa nasal. Entre os fatores que influenciam no tamanho da gota de colírio, está a conformação interna das aberturas dos bicos conta-gotas. Este trabalho determina a influência da variação dos diâmetros das aberturas dos bicos conta-gotas, provenientes do processo de produção, no tamanho da gota de colírio. Foi realizada inspeção em 49 bicos de lote único. A inspeção foi dividida em duas etapas: medição das aberturas internas e aberturas externas através de sistema de visão computacional e; medição das massas das gotas, onde um dispositivo de gotejamento automático foi desenvolvido. Os resultados das duas etapas compilados, relacionando as medidas das aberturas com o tamanho das gotas, apontaram que a abertura externa tem influência direta no tamanho das gotas, enquanto a abertura interna tem relação inversa no tamanho das gotas. Considerando um volume médio de gota de colírio de 40µl, um frasco de 5ml entrega 125 gotas, ou seja, uma variação na abertura externa de ±2,3% representa uma variação na gota de ±2,6%, o que corresponde uma redução em até 13 gotas no frasco. Enquanto uma variação no diâmetro da abertura interna de ±14% gera uma variação de ±5,4% no volume da gota, com uma redução de até 27 gotas no frasco. O sistema de visão computacional mostrou-se eficiente na medição das aberturas dos bicos e uma proposta eficaz para controle de qualidade. A adoção de sistema de visão na linha de produção pode aprimorar o controle de qualidade de peças injetadas realizado atualmente na indústria, com inspeção automática não apenas das aberturas externas, assim como as aberturas internas de 100% da produção.

Palavras chaves: tamanho da gota de colírio. variação aberturas. custo tratamento. visão computacional

ABSTRACT

An aqueous ophthalmic solution instilled as a drop in the lower conjunctival sac remains the preferred dosage form for ocular medication in chronic eye diseases. The eye drops instillation is regarded as problematic due to the high variability of eye drop size. The low capacity of the precorneal area results in an optimal drop volume of about 20µl. The risk of adverse systemic effects of medications due to systemic absorption via the nasal mucosa, can cause adverse effects; besides the overdosage results in wastage of medication and increase in treatment cost. The size of the drops delivered from plastic dropper bottles is also influenced by the design and by the characteristics of the dropper tip. The aim of this dissertation is to determine the influence of the diameters of the dropper apertures on the size of the eye drop caused during the production process. The dropper tip are low-density polyethylene molded parts and forty nine dropper tips were inspected. These inspections were divided into two stages: measurement of inner aperture and outer aperture through computer vision system and; measuring the drop mass. For this work, an automatic drip device was developed to generate drops without human interference. In this work only one model of dropper tip was used from a single batch. The results of the stages were compiled, relating the apertures with the drop size. According to the results, the outer aperture has direct influence on the drop size, while the inner aperture has an inverse relation to the drop size. A variation in the outer aperture of $\pm 2.3\%$ varies the drop in $\pm 2.6\%$. Considering an average drop of 40µl, a bottle of 5ml delivers 125 drops, i.e. a variation in the outer aperture could reduce up to 13 drops in a bottle. On the other hand, the inner aperture variation of \pm 14%, varies the drop in \pm 5.4%, which is equivalent to a variation of up to 27 drops in a bottle. The results of measuring the apertures presented by the vision system were consistent; therefore, it is an option for quality control. Currently the industry performs quality control of molded parts, however the adoption of vision systems in the production line could improve the quality control of inner and outer apertures of 100% of the parts.

Key words: eye drop size. aperture diameter variation. treatment cost. computer vision system.

LISTA DE TABELAS

Tabela 1 – Diâmetros das aberturas dos bicos	25
Tabela 2 – Comparação entre os sistemas visual humano e artificial	32
Tabela 3 – Compilação dos resultados das medições	. 69
Tabela 4 – Compilação dos resultados das medições e grupos de famílias	72
Tabela 5 – Comparação custo anual com tratamento de glaucoma	. 76

LISTA DE FIGURAS

Figura 1 – Fotografia de alta velocidade de uma gota caindo	22
Figura 2 – Estrutura do bico conta-gotas	24
Figura 3 – Eixos de uma imagem digital	28
Figura 4 – Exemplos de extração de bordas em imagens	. 29
Figura 5 – Espectro de luz humano e de CCD	. 31
Figura 6 – Evolução Industrial até indústria 4.0	34
Figura 7 – Estrutura de um sistema de visão	. 38
Figura 8 – Controladores industriais	39
Figura 9 – Tamanhos típicos de sensores CCD e CMOS	41
Figura 10 – Diagrama de um sensor CCD	.42
Figura 11 – Diagrama de um sensor CMOS	43
Figura 12 – Propriedades das lentes	45
Figura 13 – Tipos de reflexão	. 48
Figura 14 – Tipos de iluminação para sistemas de visão	50
Figura 15 – Iluminação laser de linha para inspeção 2D	51
Figura 16 – Dispositivo de gotejamento automático	52
Figura 17 – Esquema acionamento automático de frasco de colírio	. 53
Figura 18 – Secção transversal do bico conta-gotas	54
Figura 19 – Defeitos de injeção em bicos conta-gotas	. 56
Figura 20 – Simulação dos erros nos bicos	58
Figura 21 – Configuração do sensor de medição laser	. 60
Figura 22 – Mesa cartesiana com sensor de medição laser	61
Figura 23 – Imagens dos perfis capturadas pelo sensor laser	. 62
Figura 24 – Gráfico 3D dos dados coletados e vista de topo do gráfico	62
Figura 25 – Configuração do sistema de visão computacional	63
Figura 26 – Sistema de visão em laboratório	. 64
Figura 27 – Programa de medição do sistema de visão computacional	.65
Figura 28 – Dispositivos para pesagem das gotas	.66
Figura 29 – Fluxograma do processo de pesagem das gotas	67
Figura 30 – Compilação dos resultados das medições	70
Figura 31 – Variação da gota pela variação da abertura externa	.73
Figura 32 – Variação da gota pela variação da abertura interna	74
Figura 33 – Variação da gota pela variação da relação das aberturas	.75

LISTA DE ABREVIATURAS E SIGLAS

OMS	Organização mundial da saúde
CPU	Central processing unit
CCD	Charged coupled device
CMOS	Complementary metal oxide semiconductor
PC	Personal computer
LED	Light emitter diode
PIXEL	Picture element
PCI	Placa de circuito impresso
ROI	Region of interest
MES	Manufacturing Execution Systems
TI	Tecnologia da Informação
ANVISA	Agência Nacional de Vigilância Sanitária
FDA	Food and Drug Administration
ΙΟΤ	Internet of things
LDPE	Low density polyethylen
CSV	Comma separated values
CSEP	Circular scan edge position
UNIFESP	Universidade Federal de São Paulo,
CASO	Centro Avançado de Superfície Ocular
ABNT	Associação Brasileira de Normas Técnicas

SUMÁRIO

1	INTRODUÇÃO	3
1.1	FORMATAÇÃO DO PROBLEMA	3
1.2	JUSTIFICATIVA	7
1.3	OBJETIVO GERAL	3
1.3.1		3
1.4		<i>ነ</i>
1.5)
2	ESTADO DA ARTE	i
3	SISTEMA DE VISAO ARTIFICIAL	3
3.1	FUNDAMENTOS DO PROCESSAMENTO DIGITAL DE IMAGENS 28	3
3.2	DIFERENÇA ENTRE VISÃO HUMANA E DE MÁQUINA)
3.3	SISTEMA DE VISAO APLICADO NA INDUSTRIA	1
3.3.1)
3.4	ARQUITETURA DE UM SISTEMA DE VISAO ARTIFICIAL	י ר
3.4.1	Câmera 40	<i>ን</i> ገ
3.4.2	1 Comparação entre sensor CCD e CMOS	, 1
3.4.3	Sistema óptico	1
3.4.3	.1 Lentes ópticas	1
3.4.3	3.2 Sistema de Iluminação	3
3.4.3	3.2.1 <i>Tipos de iluminação</i>	3
4	MATERIAL E MÉTODOS	2
4.1	BICO CONTA-GOTAS	1
4.1.1	Processo de produção do bico	5
4.2	INSPEÇÃO DOS BICOS 57	7
4.2.1	Inspeção dos diâmetros das aberturas dos bicos	3
4.2.1	.1 Inspeção por sensor laser 2D) >
4.2.1) 3
ч .5 5		י ג
6		, 7
DEE		h
		J
dispo	NDICE A - Tabela com calculo das massas de gotas para validação do	z
		,
APE	NDICE B - Registro das imagens das inspeções com sistema de visão das	h
		5
APE	NDICE C - Registro da pesagem das gotas dos bicos inspectonados 95)) (
	XU A - Foina de dados – Solenoide marca Soletec	10
ANE	XU B - Folha de dados – Temporizador eletromecânico marca Omron 10	13
ANE	XO C - Folha de dados – Sensor de medição laser marca Omron 10)6
ANE	XO D - Folha de dados – Sistema de visão marca Omron 10)9

1 INTRODUÇÃO

Na oftalmologia, algumas doenças crônicas provocam diminuição da acuidade visual e podem, eventualmente, levar à perda de visão. O custo crescente da atenção à saúde pública tem se tornado um problema preocupante, pois o prejuízo visual e a cegueira causam um significante impacto no desenvolvimento socioeconômico dos indivíduos e da sociedade (SALOMÃO, MITSUHIRO e JUNIOR, 2009). A Organização Mundial da Saúde (OMS) aponta que mais de 161 milhões de pessoas no mundo têm algum tipo de prejuízo visual, sendo 37 milhões cegos (RESNIKOFF *et al.*, 2004). O mesmo estudo aponta uma prevalência em pessoas acima de 50 anos, correspondendo a mais de 82% dos cegos.

Doenças oftalmológicas crônicas têm impacto financeiro significativo para o sistema de saúde. As doenças crônicas mais relevantes para esse trabalho são síndrome do olho seco e glaucoma. A síndrome do olho seco, é uma doença multifatorial que afeta o filme lacrimal e consequentemente a superfície ocular como um todo em aproximadamente 15 a 20% da população mundial. Diferentes métodos são propostos para o tratamento, de acordo com a gravidade da doença. Eles variam desde educação do paciente até o uso de medicações tópicas (colírios) e sistêmicas. Dentre as tópicas, destacam-se as lágrimas artificiais, os anti-inflamatórios (não hormonais, corticosteroides, ciclosporina A) e o soro autólogo (DEWS, 2007). O glaucoma é outro exemplo de doença com significativo impacto financeiro para o sistema de saúde, pois envolve uso crônico de medicamentos, procedimentos cirúrgicos, consultas e exames complementares freguentes (GUEDES, PALETTA e CHAOUBAH, 2008). É uma doença irreversível, que provoca o bloqueio dos canais de fluido de drenagem no interior do olho, resultando no aumento da pressão intraocular (KINGMAN, 2004). A consequência é a perda gradual de visão, podendo até levar a cegueira se não for tratado (SALOMÃO, MITSUHIRO e JUNIOR, 2009). Dados da OMS indicam que o glaucoma é a segunda causa de cegueira no mundo, 65 milhões de pessoas já foram diagnosticadas com glaucoma, sendo 900 mil no Brasil (KINGMAN, 2004).

Levando-se em conta o crescimento do número de idosos no Brasil, que hoje representam 7,9% da população e que em 2030 serão 13,44% (IBGE, 2015) e que a maior prevalência de problemas oculares é em idosos, faz-se necessário implantar

soluções para redução do impacto financeiro dos tratamentos oculares na renda familiar dessa população.

A maioria dos fármacos utilizados para tratamentos de doenças oculares são soluções aquosas com ingredientes ativos, os colírios. A sua aplicação pode ser realizada por uma ampla gama de frascos do tipo conta-gotas, com diferentes tipos de bicos, que permitem a administração do fármaco lentamente, gota a gota (SKLUBALOVÁ e ZATLOUKAL, 2007).

São três fatores que influenciam no tamanho da gota de colírio administrada a partir de um frasco de conta-gotas de plástico: as propriedades físico-químicas da solução; forma de o paciente manusear o frasco conta-gotas; e a concepção e as características do conta-gotas e do frasco (SANTVLIET e LUDWIG, 2004).

A viscosidade e tensão superficial da solução têm significante influência na massa da gota dispensada (SANTIVLIET e LUDWING, 1999). O estudo de COVRE *et al.*, (2015) relaciona a massa de gotas de colírio lubrificante de diferentes marcas, ao volume de 20µl. No estudo, foram relacionados 05 (cinco) fármacos lubrificantes utilizados em oftalmologia. A metodologia do estudo foi capturar 05 (cinco) medidas de 20µl de cada fármaco utilizando micropipeta (Eppendorf/20µl), e cada gota foi pesada em uma balança de precisão calibrada (Bioprecisa Electronic Balance FA2104N). De acordo com os resultados, COVRE *et al.*, (2015) sugerem que não há padrão de referência para a massa das gotas de colírio lubrificante para volume 20µl.

Outro fator é a aplicação do fármaco e manuseio do frasco conta-gotas, a forma de o paciente aplicar o fármaco, por exemplo, o ângulo de aplicação de 45° ou 90°, ou a pressão aplicada no frasco, também influenciam na formação da gota (GAYNES *et al.*, 2007). O estudo de NASCIMENTO *et al.*, (2015), indica volume médio por gota superior a 200% do volume ideal de 20µl indicado na literatura. No estudo, NASCIMENTO *et al.*, (2015) coletaram amostras de cinco fármacos lubrificantes utilizados em oftalmologia. As amostras foram coletadas por quatro voluntários com idades de 21 a 29 anos, onde cada voluntário coletou uma amostra de gota (aplicada a 90°) de cada um dos cinco fármacos. Cada amostra de gota foi pesada em uma balança de precisão calibrada (Bioprecisa Electronic Balance FA2104N).

Por último, a concepção e características físicas do bico conta-gotas. Segundo ROIZENBLATT *et al.,* (2001), a conformação interna do bico conta-gotas tem influência direta no tamanho da gota, a concepção e as características físicas do conta-gotas são pré-determinadas no seu projeto e podem sofrer variações no

processo de produção. Os bicos são peças de material termoinjetado e toda modelagem por injeção pode sofrer variações dimensionais por contração do material, decorrente de variações de temperatura, pressão de injeção, temperatura do molde ou tempo do ciclo de injeção (ROSATO, 2000, p. 1-27).

1.1 FORMATAÇÃO DO PROBLEMA

A instilação de solução oftálmica aquosa, como instilar uma gota de colírio no interior do saco conjuntival inferior, continua sendo a forma preferida de dosagem de fármaco (SANTVLIET e LUDWIG, 2004). A aplicação de colírio nos olhos é conhecida como problemática, devido a variação no tamanho da gota relacionado a capacidade da área pré-corneal de 20µl. O excesso de colírio gera desperdício de fármaco, consequentemente aumento no custo do tratamento e risco de efeitos adversos devido a absorção sistêmica via mucosa nasal (ESTACIA *et al.*, 2013; GERMAN, HURST e WOOD, 1999; SKLUBALOVÁ e ZATLOUKAL, 2005). No entanto os tamanhos das gotas de colírios disponíveis no mercado variam entre 25µl e 70µl, com uma média de 40µl (LEDERER e HAROLD, 2015; KUMAR *et al.*, 2011). O volume instilado determina a ação terapêutica do fármaco e o volume excedente ao limite de superior de 25µl é desperdiçado, além disso o excesso de volume na instalação, pode causar absorção sistêmica e o risco de efeitos adversos indesejados (KUMAR *et al.*, 2011).

O desperdício de fármaco eleva o custo do tratamento, uma vez que o tamanho de uma gota de colírio deve ser determinado pelo máximo volume armazenado pelo fundo do saco conjuntival (ESTACIA *et al.*, 2013; GERMAN, HURST e WOOD, 1999).

A conformação interna do bico conta-gotas é um fator que influencia no tamanho da gota (ROIZENBLATT *et al.*, 2001; SANTVLIET e LUDWIG, 2004). O diâmetro das aberturas interna e externa é pré-determinado no projeto e pode sofrer variações ao longo do processo de produção, pois toda moldagem por injeção requer certas tolerâncias dimensionais, uma vez que as condições de moldagem e desenho do molde afetam a contração do material, ainda sob as melhores condições pode haver algumas pequenas variações na temperatura de massa do material, pressão de injeção, temperatura de molde ou ciclo total de injeção (ROSATO, 2000, p. 1-27).

Posto o problema, este trabalho busca responder à pergunta da pesquisa:

a) Qual a relação entre a variação dos diâmetros de bicos conta-gotas (provenientes do processo de produção), e o tamanho de uma gota de colírio?

1.2 JUSTIFICATIVA

A preocupação com o custo do tratamento de doenças oculares é uma realidade mundial, visto que estudos apontam que o impacto financeiro na renda familiar é um importante fator envolvido na aderência do paciente ao tratamento. Para SILVA, L. R. (2010), a falta de recursos financeiros representa 10% da não fidelidade ao tratamento, enquanto para SILVA, L. M. (2002) a falta de dinheiro é a principal causa da interrupção do tratamento em 47,6% dos casos. Entre as doenças oculares crônicas mais comuns, o glaucoma é que tem maior impacto no sistema de saúde público e na renda familiar, principalmente das famílias de menor renda (GUEDES *et al.*, 2008).

Dada a relevância do tema, autores relacionam o custo do tratamento ao tamanho da gota de colírio (KUMAR *et al.*, 2011; ROIZENBLATT *et al.*, 2001; GERMAN, HURST e WOOD, 1999; SKLUBALOVÁ e ZATLOUKAL, 2005). Em comum se tem consenso do desvio padrão do volume da gota entre diferentes fabricantes e a necessidade de se padronizar o tamanho da gota, a fim de reduzir os custos com tratamento e garantir o uso contínuo da medicação sem a sua interrupção por motivos financeiros, além de poder ampliar o número de usuários dispostos a iniciar o tratamento.

As propriedades físico-químicas do fármaco, a forma de o paciente instilar o colírio, assim como o diâmetro do orifício do bico conta-gotas, são os principais fatores que determinam o tamanho da gota de colírio (SANTVLIET e LUDWIG, 2004). Mesmo a geometria do bico sendo explorada por inúmeros autores (GERMAN, HURST e WOOD; 1999; ROIZENBLATT *et al.*, 2001; SANTVLIET e LUDWIG, 2004; SKLUBALOVÁ e ZATLOUKAL, 2005), nenhum estudo preliminar procurou investigar a influência do processo de produção dos bicos conta-gotas no tamanho da gota.

Este trabalho se diferencia dos demais, pelo fato de focar na variável do processo de produção do bico, por isso se justifica pela contribuição social (tema de saúde pública) e pelo fato de propor uma solução de controle de qualidade de produtos injetados para indústria.

1.3 OBJETIVO GERAL

O objetivo geral deste estudo é determinar a influência da variação dos diâmetros das aberturas de bicos conta-gotas, provenientes do processo de produção, no tamanho da gota de colírio, através da inspeção das aberturas dos bicos utilizando sistema de medição computacional.

1.3.1 Objetivos específicos

Para alcançar o objetivo geral proposto acima, foram definidos os seguintes objetivos específicos:

- a) Propor um sistema de inspeção digital apropriado para medição dos diâmetros das aberturas dos bicos conta-gotas;
- b) Desenvolver metodologia para gotejamento automático, sem contato humano, para padronização das gotas;
- c) Desenvolver metodologia para simular a variação das aberturas dos bicos conta-gotas.

1.4 HIPÓTESE

Nesta dissertação, considerando a diretriz teórica adotada e diante dos objetivos apresentados, definiu-se uma hipótese orientadora da pesquisa, buscando evidências da relação do diâmetro das aberturas do bico conta-gotas com o tamanho da gota de colírio.

A variação do dimensional de bicos conta-gotas, provenientes do processo de produção, influencia diretamente no tamanho da gota de colírio.

Para ROIZENBLATT *et al.*, (2001) e SANTVLIET & LUDWIG (2004), o tamanho da gota é influenciado, entre outros fatores, pela conformação interna do bico contagotas e pela concepção e as características do conta-gotas e do frasco.

1.5 ESTRUTURA DO TRABALHO

Este trabalho está estruturado em oito capítulos.

Neste capítulo, é exposta a motivação para realização da pesquisa, os objetivos e as justificativas do trabalho.

No capítulo 2, é apresentado o estado da arte, com a exposição de pesquisas e artigos correlatos, que investigam a variação do tamanho das gotas de colírio.

O capítulo 3 fundamenta a teoria sobre sistemas de visão artificial, descreve sua arquitetura, funções de cada um dos seus componentes e técnicas de iluminação.

O capítulo 4 apresenta metodologia para gotejamento automático das gotas e simulação da variação das aberturas dos bicos; assim como materiais utilizados e sistemas de inspeção digital das aberturas dos conta-gotas.

O capítulo 5 traz os resultados obtidos nas etapas de inspeção dos bicos e medição das massas das gotas, relacionando os resultados com custo de tratamento de glaucoma.

O capítulo 6 apresenta discussão dos resultados conclusões e proposta para estudos futuros.

Na sequência, estão as referências bibliográficas, assim como apêndices e anexos.

2 ESTADO DA ARTE

Neste capítulo, é apresentado o estado da arte dos estudos relacionados a investigação da variação do tamanho das gotas de colírio. A maioria dos fármacos utilizados no tratamento de doenças oculares são soluções aquosas, com ingredientes ativos e, aplicados por frascos do tipo conta-gotas (SKLUBALOVÁ e ZATLOUKAL, 2007). Associado a isso, a falta de uniformidade no tamanho da gota gera desperdício de medicamento e consequentemente elevação do custo do tratamento (ESTACIA *et al.,* 2013; GERMAN, HURST e WOOD, 1999; SKLUBALOVÁ e ZATLOUKAL, 2005).

A formação de gotas sob diferentes circunstâncias foi estudada inicialmente por TATE (1864). Ele identificou que o peso de uma gota depende da circunferência do capilar em que a gota foi formada e a tensão superficial do liquido (Lei de Tate). A gota de massa ideal *mi* se desprende do tubo no instante imediatamente após seu peso *P* se igualar às forças de tensão superficial *Fy* que sustentam a gota.

$$F_{\gamma} = P = m_i \cdot g \tag{1}$$

Onde: F_{γ} : força de tensão superficial P : peso m_i : massa da gota g : força da gravidade

As forças de tensão *F*y que mantém a gota ligada ao resto do liquido são dadas pelo produto da circunferência do orifício por onde a gota irá se formar pela tensão superficial do líquido, uma propriedade inerente a cada liquido de tal forma que:

$$F_{\gamma} = 2\pi \cdot \mathbf{r} \cdot \gamma \tag{2}$$

Onde:

 F_{γ} : força de tensão superficial

r : raio do tubo

γ: tensão superficial do líquido.

A partir das expressões (1) e (2), temos que o peso da gota é proporcional ao raio do tubo r e a tensão superficial do líquido γ . Esta é a denominada lei de Tate.

$$m_i \cdot g = 2\pi \cdot \mathbf{r} \cdot \gamma \quad \rightarrow \quad \gamma = \frac{m_i \cdot g}{2\pi \cdot \mathbf{r}}$$
 (3)

Onde: *m_i*: massa da gota g : aceleração da gravidade r : raio do tubo γ : tensão superficial do líquido.

Posteriormente, HARKINGS e BROWN (1919) observaram que somente a porção mais extrema da gota é que alcança a posição de instabilidade e cai, ou seja, apenas 60% da gota formada na extremidade do capilar é efetivamente separada (figura 1).

Figura 1 – Fotografia de alta velocidade de uma gota caindo. Na formação de uma gota até o momento de ruptura. Observa-se que somente a porção mais externa da gota é que alcança a posição de instabilidade e cai. Perto de 40% do líquido que forma a gota permanece ligada ao tubo. Fonte: PILLING (2015)

HARKINGS e BROWN (1919), concluíram que a lei de Tate era inconsistente e introduziram um fator de correção derivado empiricamente, chamado coeficiente de contração (F_{HB}), que é uma função do raio do capilar e do volume da gota.

$$m_i \cdot g = 2\pi \cdot \mathbf{r} \cdot \gamma \cdot F_{HB} \tag{4}$$

Onde: m_i : massa da gota g : aceleração da gravidade r : raio do tubo γ : tensão superficial do líquido $F_{\rm HB}$: coeficiente de contração Considerando que, no instante de desprendimento, existe um ponto de equilíbrio entre a força da gravidade na gota ($F = m \cdot g$) e a força do capilar ($F = 2\pi \cdot \mathbf{r} \cdot \gamma$) segurando a gota na extremidade do capilar,

$$F = m \cdot g = 2\pi \cdot \mathbf{r} \cdot \boldsymbol{\gamma} \tag{5}$$

Então,

$$m = \frac{2\pi \cdot \mathbf{r} \cdot \boldsymbol{\gamma}}{g} \tag{6}$$

Outros estudos aplicam as teorias de formação de gotas, ao tamanho das gotas de colírios. Os autores SANTVLIET e LUDWIG (1999), investigaram a influência das propriedades físico-químicas no tamanho da gota e também a influência do ângulo de aplicação e concluíram que a tensão superficial da solução, assim como a velocidade de compressão do frasco e ângulo de aplicação tem significante impacto no peso da gota. Os mesmos autores em 2001, investigaram a influência do formato do bico conta-gotas no tamanho da gota. A principal conclusão foi de que o diâmetro da abertura exterior do bico conta-gotas determina o tamanho da gota aplicada, enquanto a abertura interna tem impacto no fluxo do líquido pelo capilar. Para tais resultados, chegaram a desenvolver um dispositivo automático para aplicação das gotas.

SKLUBALOVÁ e ZATLOUKAL (2007) apresentaram estudo sobre os sete principais fatores que afetam no tamanho da gota e a variação da dosagem. Concluíram que o formato da abertura do conta-gotas, assim como o manuseio para aplicação do fármaco, tem significante influência na variação do tamanho da gota.

Com uma abordagem que investiga a influência da estrutura do recipiente sobre o tempo de aplicação em frascos de plástico, YOSHIKAWA e YAMADA (2010) desenvolveram um dispositivo automático para medição do tempo de aplicação da solução e três modelos de bicos (figura 2). Com o experimento, chegaram à conclusão de que o diâmetro interno do bico conta-gotas influencia no tempo de administração do medicamento.

GERMAN, HURST e WOOD (1999) tiveram uma abordagem voltada para variação do volume das gotas entre diferentes marcas de colírios disponíveis na Inglaterra. Os resultados apontaram variação de volumes entre 33,8µl até 63,4µl, sendo que os fatores identificados são os mesmos apresentados nos estudos acima,

como propriedades físicas químicas, dimensionais do bico conta-gotas e ângulo de aplicação.

Autor propõe três tipos de bicos com volumes internos diferentes Fonte: YOSHIKAWA e YAMADA (2010)

O estudo de SANTVLIET e LUDWIG (2004) é mais abrangente, pois pretende discutir os determinantes do tamanho da gota de colírio. São abordados o formato do bico e as características físicas do frasco; as propriedades físico-químicas da solução; e o manuseio pelo paciente na aplicação do medicamento. A conclusão foi a necessidade de um menor diâmetro da abertura externa do bico conta-gotas. Também se concluiu que uma viscosidade até 15mPa não influencia no tamanho da gota, além disso, o manuseio pelo paciente tem significante influência, por isso foi proposta a aplicação com frasco na posição vertical (90°).

KUMAR *et al.* (2011) idealizaram um método para formação de uma gota de colírio reduzida, para tratamento de glaucoma. O método consiste na inserção de um tubo capilar dentro do bico conta-gotas, para reduzir os diâmetros internos das aberturas do bico. Também foi proposta a alteração das propriedades físico-químicas dos fármacos estudados. Com as alterações, houve uma redução no volume das gotas de 35%.

Amostra	Diâmetro da Abertura externa	Diâmetro da Abertura interna
Bico conta-gotas antes da inserção do capilar	1,74mm	0,68mm
Bico conta-gotas depois da inserção do capilar	0,88mm	0,5mm

Tabela 1 – Diâmetros das aberturas dos bicos. Fonte: KUMAR *et al* (2011)

3 SISTEMA DE VISÃO ARTIFICIAL

No presente capítulo, é fundamentada a teoria sobre sistemas de visão artificial, sua arquitetura e funções de cada um dos seus componentes, assim como técnicas de iluminação. A tecnologia de sistema de visão artificial, ou simplesmente sistema de visão, é uma ferramenta computacional, associada ao ambiente industrial, cuja finalidade é obter informações relevantes para tomada de decisão em linhas de manufatura. Um sistema de visão artificial envolve a extração, manipulação, análise e classificação automática de imagens ou sequência de imagens através de um sistema computacional específico (WHELAN e MOLLOY, 2001).

O projeto de um sistema de visão requer diferentes técnicas, e envolve conhecimentos em eletrônica, para desenvolvimento de hardware, conhecimentos de física para especificação de iluminação e óptica, em engenharia mecânica para instalação do sistema em máquinas e conhecimento em informática para programação e conectividade do sistema (WHELAN e MOLLOY, 2001).

Na indústria, os sistemas de visão propiciam inspeção automatizada em processos de qualidade, seleção, classificação, leitura de caracteres e orientação de objetos (FRICK, 2008, p. 28). Segundo WENDEL (2014), entre 2009 e 2014, nos mercados asiático, europeu e norte americano, cresceu a demanda por soluções automáticas com sistemas de visão. O mesmo autor afirma que seria difícil a indústria atender às exigências crescentes da produção moderna sem a tecnologia de sistema de visão, por exemplo, para atender ao controle de qualidade de 100% de peças inspecionadas, mantendo-se velocidade de produção e com maior confiabilidade do processo quando comparado à inspeção manual, da mesma forma para atender ao aumento da demanda por rastreabilidade e documentação que comprove a qualidade dos produtos.

Conforme STEGER, ULRICH e WIEDEMANN (2008, p. 1), as aplicações para sistemas de visão passam por diferentes segmentos industriais, tais como: automotivo, alimentos e bebidas, semicondutores, cosméticos e farmacêuticos, conforme exemplos a seguir:

- a) Identificação de objetos Exemplo de aplicação: controle de fluxo de material através da identificação de símbolos especiais, sequências de caracteres, códigos de barras, ou características específicas dos objetos, como sua forma;
- b) Detecção de posição Exemplo de aplicação: manipulação de peças por robôs em linhas de montagem. O robô usa as coordenadas x,y para identificação e manipulação de peças;
- c) Verificação de integridade Exemplo de aplicação: inspeção de componentes em placas de circuito impresso;
- d) Inspeção de dimensão Exemplo de aplicação: controle de qualidade através dos parâmetros geométricos das peças;
- e) Identificação e verificação de caracteres Exemplo de aplicação: leitura ou apenas a verificação de caracteres para inspeção, data de validade, números de lotes e seleção de peças.

3.1 FUNDAMENTOS DO PROCESSAMENTO DIGITAL DE IMAGENS

Um processo fundamental para a tecnologia de visão artificial é o processamento digital de imagens. O processamento digital de imagens visa transformar uma imagem digital de modo a evidenciar e/ou realçar informações para análise. Em termos gerais, refere-se a qualquer operação que atue para transformar uma imagem (GONZALES e WOODS 2000, p. 1). As técnicas de processamento digital de imagem podem ser utilizadas tanto para analisar imagens digitais como para realçar características e corrigir erros. Qualquer situação que exija o reforço, recuperação, análise ou a criação de uma imagem digital é uma candidata para essas técnicas.

A imagem é a estrutura básica de dados de um sistema de visão, uma vez que esses são os dados que um dispositivo de aquisição de imagem fornece para a memória do computador e o elemento básico de uma imagem digital é o *pixel,* acrônimo do inglês *pixel element* (HORNBERG, 2006, p. 511).

Uma imagem digital monocromática pode ser representada matematicamente por uma função f(x,y) da intensidade luminosa, sendo seu valor, em qualquer ponto de coordenadas espaciais (x,y), proporcional ao brilho (ou nível de cinza) da imagem naquele ponto (GONZALEZ, WOODS e EDDINS, 2004, p.2), conforme figura 3.

Figura 3 – Eixos de uma imagem digital.

Foto monocromática do *Cloud Gate* em Chicago, IL ilustra imagem monocromática e a convenção utilizada para o par de eixos (x,y). Fonte: adaptação de GONZALES e WOODS (2000, p. 04)

As técnicas computacionais de processamento de imagens acompanharam a evolução da informática. Com isso, teve o número de aplicações possíveis ampliado em diferentes segmentos (MIRMEHDI, 2012, p. 7). Linguagens de programação baseadas em texto, como *C/C*++ e *Matlab*, ou *LabVIEW*, que é uma linguagem de programação gráfica, dispõem de bibliotecas prontas para o desenvolvimento de aplicativos na área de visão computacional, com módulos de processamento de imagens, estrutura de dados e álgebra linear. Por exemplo, a biblioteca multiplataforma *OpenCV* (*open source computer vision library*) disponibiliza mais de 350 algoritmos de visão computacional como: filtros de imagem, calibração de câmera, reconhecimento de objetos e análise estrutural (disponível em: http://opencv.org/). A figura 4 ilustra exemplos de filtros aplicados e como alteram as imagens.

Figura 4 – Exemplos de extração de bordas em imagens. imagem original (b) imagem binária (c) filtro Sobel (d) filtro Canny. Fonte: adaptação de GONZALES e WOODS (2000, p. 04)

3.2 DIFERENÇA ENTRE VISÃO HUMANA E DE MÁQUINA

A metodologia de processamento de imagens dos computadores se diferencia da dos seres humanos. Para o reconhecimento de objetos, o cérebro humano processa informações visuais utilizando espaço semântico, ou seja, através da extração dos recursos semanticamente significativos. Já o computador necessita processar informações robustas, possíveis de serem detectadas, com mínimo grau de subjetividade (ZHANG, 2010).

A diferença entre a percepção humana de imagens e a estatística de pixels adotada pelos computadores é chamada de lacuna semântica (PAVLIDIS, 2016). A lacuna semântica se dá pelo fato de o processamento de informações realizado num computador estar baseado em dados numéricos e estatísticos, o que não possui correlação direta com a semântica subjetiva humana (FELIPE, 2016). As técnicas recentes de processamento de informação não permitem a detecção robusta de dados semânticos como fazem os seres humanos (ZHANG, 2010).

O sistema de visão humano refere-se ao complexo sistema biológico, que permite ao homem a interpretação da radiação eletromagnética do espectro visível da luz (400nm até 780nm). Este abrange operações fisiológicas do olho humano. Seu processo de conversão desta radiação em sinais neuronais é processado no cérebro pelo córtex visual (SEGRE, 2016). Por outro lado, os sistemas de visão artificial são sistemas que visam a capturar e analisar imagens por meio eletrônico, possibilitando detecções com repetibilidade de falhas microscópicas imperceptíveis ao olho humano (PHILLIPS, 2016). A aplicação de um sistema de visão numa linha de produção em movimento contínuo pode superar uma dezena de inspeções por segundo.

O atual estágio tecnológico dos computadores, seus processadores, dispositivos de armazenamento de massa e conectividade, assim como as ferramentas de processamento e inspeção de imagens, favorecem as condições para modelagem de sistemas de visão artificiais cada vez mais potentes e capazes de solucionar problemas complexos.

Um grande desafio na evolução dos sistemas de visão artificial está na capacidade dos sistemas em trabalhar em diferentes condições de luminosidade, contraste e posicionamento relativo dos objetos em uma cena, sem perder a capacidade de interpretá-la, de forma analógica à capacidade humana (HORNBERG,

2006, p.30). Por outro os sensores de visão do tipo CCD (*charged coupled device*) ou CMOS (*complementary metal oxide semiconductor*), têm maior amplitude no espectro de luz se comparado à visão humana, conforme figura 5 (TREIMAN, 2010).

Figura 5 – Espectro de luz humano e de sensor de visão. Sensores de imagem têm maior espectro de luz, indo do UV ao IR Fonte: adaptação de WP (2016).

Outro diferencial é que o ambiente, no qual os seres humanos vivem e trabalham, é tridimensional e em constante mudança, com inúmeras variáveis e com objetos mal definidos, enquanto na automação industrial, as tarefas são simples e repetitivas, com objetivos conhecidos e definidos, ou seja, o ambiente de produção é projetado para simplificar essas tarefas (VERNON, 1991, p.3). Na tabela 1 são comparadas as características entre sistema visual humano e o sistema de visão aplicado na indústria.

Tabela 2 – Comparação entre os sistemas de visão humano e artificial. Fonte: adaptação MARQUES FILHO e VIEIRA NETO (1999, p.11) e ICVGR (2011).

	SISTEMA DE VISÃO	SISTEMA DE VISÃO
	HUMANO	ARTIFICIAL
ESPECTRO	Limitação à faixa de luz visível (400nm até 780nm) do espectro de ondas eletromagnéticas.	Sensibilidade varia do espectro UV ao IR
FLEXIBILIDADE	Flexível e capaz de se adaptar a diferentes tarefas e condições de trabalho.	Inflexível, dependente de diferentes tarefas (<i>tasks</i>) pré-programadas.
HABILIDADE	Capaz de estabelecer estimativas relativamente precisas em assuntos subjetivos.	Capaz efetuar medições exatas baseadas em contagem de <i>pixels</i> (Dependente da resolução da imagem digitalizada).
COR	Possui capacidade de interpretação subjetiva de cores.	Mede objetivamente os valores das componentes RGB para determinação da cor, com técnicas de medição de HSV e HSL.
SENSIBILIDADE	Capaz de se adaptar a diferentes condições de luminosidade, características físicas da superfície do objeto e distância ao objeto. Limitado na distinção de níveis diferentes de cinza, simultaneamente.	Sensível ao nível e padrão de iluminação, bem como à distância em relação ao objeto e suas características físicas. Pode trabalhar com centenas de tons de cinza, conforme projeto do digitalizador.
TEMPO DE RESPOSTA	Na ordem de 0,1seg.	Depende do hardware e programação, podendo chegar a ordem de 0,001seg.
2-D e 3-D	Pode executar tarefas 3-D e com múltiplos comprimentos de onda (dentro do espectro de luz visível) facilmente.	Executa tarefas 2-D com relativa facilidade e pode executar tarefas 3-D utilizando sensores de medição ou sistemas estéreos com 2 câmeras.
PERCEPÇÃO	Percebe variações de brilho em escala logarítmica. A interpretação subjetiva de brilho depende da área ao redor do objeto considerado.	Pode perceber brilho em escala linear ou logarítmica.

Mesmo com os avanços técnológicos dos sistemas de visão artificial, com base no tripé "mais inteligente, menor e mais rápido", continua um ser humano por trás da máquina para avaliar o custo-benefício da sua compra e para sua instalação e manutenção, da mesma forma realiza a análise estratégica dos dados para tomada de decisão (PHILLIPS, 2016).

3.3 SISTEMA DE VISÃO APLICADO NA INDÚSTRIA

A globalização da economia ao longo das últimas décadas aumentou a demanda por produtos manufaturados e cresceu a busca por novas tecnologias de produção. Nesse contexto, os sistemas de visão ganharam espaço nas indústrias em diferentes segmentos, como automotivo, farmacêuticos, cosméticos e alimentos e bebidas. Os avanços tecnológicos associados à redução dos custos dos equipamentos ajudaram a disseminação dos sistemas de visão na indústria (BANGERT, 2006). As soluções desenvolvidas utilizando os sistemas de visão são caracterizadas como altamente flexíveis e capazes de aumentar a produtividade mantendo um elevado controle de qualidade, preservando a imagem da empresa e a proteção da marca (CIENTISTAS ASSOCIADOS, 2006).

Diante de um cenário atualizado, a indústria de manufatura tradicional atravessa uma fase de transformação, chamada Indústria 4.0, termo usado para descrever a quarta revolução industrial (figura 6) baseada na digitalização do setor de manufatura (BAUR e WEE, 2016).

Figura 6 – Evolução Industrial até Indústria 4.0. Fonte: adaptação de (SCHLAEPFER, KOCH e MERKOFER, 2015). O contexto da Indústria 4.0 se caracteriza pela crescente digitalização e interconexão de produtos, cadeias de valor e modelos de negócios, conectando o chão de fábrica aos sistemas *MES* (*manufacturing execution system*) de gestão de produção (KICH *et al.*, 2016).

O processo de transformação vem sendo acelerado por novas tecnologias e conceitos incorporados nas indústrias, como impressão 3D, internet das coisas ou *internet of things (lot)*, robôs inteligentes, sistemas de simulação (virtualização) e computação nas nuvens (SCHLAEPFER, KOCH e MERKOFER, 2015).

A digitalização da manufatura é uma mudança de paradigma na indústria, com uma convergência para a chamada fábrica inteligente, conduzida pela tecnologia da informação (TI), com elevados níveis de automação, conectividade, segurança e sustentabilidade (HESSMAN, 2016).

Nas fábricas inteligentes, a interferência humana no processo de produção é reduzida, de forma requerer soluções complexas. No contexto da Indústria 4.0, a tecnologia de visão computacional tem papel de destaque, ao prover soluções de controle de qualidade e inspeção automática de peças. Outra função importante é o servocontrole de robôs autônomos (POSADA *et al.*, 2016).

3.3.1 Sistema de visão na indústria farmacêutica

Em nenhum outro segmento industrial, os incentivos para garantir a qualidade e segurança dos produtos é tão presente como na indústria farmacêutica, como resultado, a indústria farmacêutica é uma das pioneiras a adotarem soluções com sistemas de visão (COGNEX, 2016). Na produção farmacêutica, controle de qualidade inadequado é intolerável, não apenas para reputação do fabricante, mas também por sanções de órgãos reguladores, como a Anvisa (Agência Nacional de Vigilância Sanitária) no Brasil ou a *FDA* (*Food and Drug Administration*) nos Estados Unidos (HAYSTEAD, 2016).

Além do controle de qualidade para inspeção de falhas na manufatura, como por exemplo, falta de rótulo na embalagem, frasco incorretamente preenchido ou recipiente mal vedado (HAYSTEAD, 2016), os sistemas de visão também suportam a integração das fábricas inteligentes, provendo dados dentro da cadeia produtiva.
No Brasil, a resolução RDC nº 54 da Anvisa, determina as diretrizes e regras de identificação de um medicamento, através do conceito de serialização e rastreabilidade, que visa a reduzir o impacto financeiro e na saúde de pacientes proveniente de roubo de cargas e falsificação de medicamentos (ANVISA, 2016). Uma solução de serialização e rastreabilidade requer complexa implementação de funcionalidades de impressão, verificação e rastreabilidade, de modo aos fabricantes poderem sistematicamente imprimir e verificar os números de marcação (datas de fabricação e validade e número de lote) em todos os produtos, marcar cada produto com um número de série único e criar uma base de dados central desta informação (COGNEX, 2016). A serialização e rastreabilidade é um desafio global para indústria farmacêutica, com requisitos e prazos diferentes em cada país (OLIVEIRA, 2016).

Diante o desafio da serialização e rastreabilidade, os sistemas de visão vêm ao encontro das necessidades da indústria farmacêutica, como principal ferramenta para inspeção de números de marcação através de códigos 2D, 3D e OCR (*Optical Character Recognition*) (COGNEX, 2016).

3.4 ARQUITETURA DE UM SISTEMA DE VISÃO ARTIFICIAL

Uma estrutura funcional completa de um sistema de visão pode ter diferentes formas, porém todas com mesmo objetivo: obter os dados de uma imagem a partir de um sensor e, processá-los dentro de uma unidade de processamento, de forma a iniciar uma ação. Este objetivo é o mesmo para sistema de visão base computador pessoal, sistema de visão compacto embarcado ou câmera inteligente (HORNBERG 2006, p.427). Um sistema de visão tem arquitetura dividida em três partes: unidade de controle; sensor de imagem e sistema óptico (lente e iluminação), conforme a figura 7. O resultado da soma de partes que agregam informações importantes para possibilitar o funcionamento do sistema como um todo, do mesmo modo a estrutura funcional de um sistema de processamento de imagens é descrita da seguinte forma:

- a) Aquisição e digitalização A imagem do sensor é transformada em uma imagem digital sob a forma de uma tabela de valores discretos inteiros chamados *pixels*;
- b) Pré-processamento Essa etapa permite corrigir defeitos e imperfeições geradas durante a aquisição da imagem, que podem ter como causa características físicas do sistema, ou as condições deficientes de iluminação. O pré-processamento não é indispensável, mas na maioria dos casos, necessário;
- c) Segmentação A meta consiste em dividir uma imagem em partes constitutivas. Em uma imagem natural, a segmentação é efetuada pela detecção de descontinuidades (contornos) e/ou de similaridades (regiões) na imagem. A maioria dos processamentos é baseada na pesquisa dessas entidades que são armazenadas sob uma forma adequada (segmentos ou primitivas);
- d) Representação O alvo da representação é elaborar uma estrutura adequada, agrupando resultados das etapas presentes e o armazenamento dos diversos padrões que contêm o conhecimento *a priori*. A representação é efetuada após a obtenção das primitivas e, às vezes, ao mesmo tempo. Ela permite também medir as propriedades das "formas" resultantes da segmentação;
- e) Interpretação É a parte inteligente do processo de visão por computador, representa o alto nível e permite obter a compreensão e a descrição final do fenômeno inicial. Ela faz uso do conhecimento *a priori* do caso estudado e o conhecimento adquirido durante as fases precedentes (FACON 2006, p.7-8).

Figura 7 – Estrutura de um sistema de visão.

Câmera digital captura imagem via sensores CCD ou CMOS, digitaliza a imagem e envia sinal controlador, o qual faz o processamento e análise da imagem. Fonte: adaptação de SIPPEL (2006)

O processo para aquisição e processamento das imagens digitais em um sistema de visão, segundo PAVIM, COAN JUNIOR e SILVA (2002, p.1), segue os seguintes princípios básicos:

- a) O sistema de iluminação (diodo emissor de luz, lâmpadas e luz natural), produz um tipo de luz que incide sobre a cena, especificamente na superfície do objeto e no fundo da cena (*background*);
- b) A luz é refletida da cena (objeto e fundo) em direção à lente da câmera;
- c) A lente refrata a luz para o sensor da câmera, que transforma a imagem recebida em uma imagem eletrônica, onde cada *pixel* representa a intensidade de luz incidida sobre uma fotocélula do sensor da câmera;
- d) O processador digitaliza a imagem, formando uma matriz numérica, onde cada elemento da matriz recebe um valor compatível com a intensidade de luz do pixel correspondente;
- e) O sistema processa a imagem com o intuito de extrair as informações desejadas.
 Esta tarefa pode ser simples em alguns casos, porém, geralmente, é uma das tarefas mais complexas do sistema de visão.

3.4.1 Unidade de controle

A unidade de controle de um sistema de visão é o dispositivo responsável pelo gerenciamento da aquisição das imagens, processamento, armazenamento e por realizar a tomada de decisão e acionar os sistemas de atuação quando necessário. Todo controlador dispõe de um *software* que é a parte responsável pelo processamento das informações digitalizadas provindas do *hardware* do sistema; pela interação deste com o usuário e pelo controle de todas as outras partes do sistema. O *hardware* é a parte física do sistema de visão, onde são definidos pontos como: tipo de processador; memória disponível para processamento; quantidade de entradas e saídas; e comunicação em rede. O *hardware* também define a robustez do equipamento e sua adaptabilidade ao ambiente industrial.

Existem basicamente três tipos de controladores (conforme figura 8), os chamados base PC, onde um computador convencional ou industrial é o controlador, os controladores compactos embarcados, onde os controladores são unidades de processamento dedicadas, ou também as câmeras inteligentes, onde o processamento é realizado na própria câmera (HORNBERG 2006, p.428).

Figura 8 – Controladores industriais. Fonte: cortesia Omron e Microscan

No meio industrial, o *hardware* baseado em computador, chamado base PC, continua sendo o mais utilizado, apesar do crescimento acelerado das câmeras inteligentes, onde apenas nos Estados Unidos, no primeiro semestre de 2015, tiveram crescimento de 13% (AIA, 2016). As câmeras inteligentes, comparadas aos controladores base PC, têm menor capacidade de processamento e número limitado de funções, porém tem menor custo e são de simples programação. Essas características indicam o maior uso das câmeras inteligentes em aplicações com menor grau de complexidade, onde não comportam o custo de um sistema de visão base PC (SOUSA, 2016).

3.4.2 Câmera

O objetivo de uma câmera num sistema de visão é a de criar uma imagem a partir da luz focalizada no plano da imagem pela lente. As câmeras obtêm imagens através de uma matriz de sensores sensíveis a luminosidade. Estes sensores retornam a intensidade de luz que chega naquele ponto (STEGER, ULRICH e WIEDEMANN 2008, p.35).

O componente mais importante de uma câmera é o sensor sensível à luz, que converte a luz em sinais elétricos. Os sensores de mercado utilizados nos sistemas de visão são basicamente CCD e CMOS, respectivamente acrônimos de *charged coupled device* e *complementary metal oxide semiconductor*. Os sensores CCD ou CMOS são tipicamente construídos no formato retangular (*area scan*) ou na forma de uma linha única (*line scan*) com sensores discretos equidistantes, chamados de fotocélulas (EDMUND OPTICS, 2006, p. 209). Estas fotocélulas operam como conversores opto-eletrônicos, recebendo luminosidade por um período de tempo e gerando uma carga elétrica proporcional a intensidade de luz e ao tempo de exposição (ALPER, 2016).

Outro importante componente necessário para especificar uma câmera num sistema de visão é a interface digital. No mercado existem diferentes interfaces para câmeras digitais, conforme a necessidade da aplicação, sendo o principal fator a velocidade de comunicação, que interfere diretamente no número de quadros por

segundo que a câmera suporta. As principais interfaces disponíveis no mercado são *CameraLink*, *USB* 3.0 e *GigE* (EDMUND OPTICS, 2006, p. 208).

O formato e tamanho de um sensor CCD ou CMOS podem variar de acordo com a necessidade da aplicação e resolução da imagem. No mercado, os sensores são fabricados em diversos tamanhos, conforme figura 9 (EDMUND OPTICS, 2006, p. 209).

		Tamanho	Largura	Altura	Diagonal	Passo
		1 inch	12.8mm	9.6mm	16mm	20µm
а	ď	2/3 inch	8.8mm	6.6mm	11mm	13.8µm
		1/2 inch	6.4mm	4.8mm	8mm	10 µm
		1/3 inch	4.8mm	3.6mm	6mm	7.5 μm
	I	1/4 inch	3.2mm	2.4mm	4mm	5µm

Figura 9 – Tamanhos típicos de sensores CCD e CMOS. Fonte: adaptação de STEGER, ULRICH e WIEDEMANN (2008, p.45)

Como caracteriza HORNBERG (2006, p.44), a resolução de uma câmera é definida pela quantidade de linhas e colunas do sensor. Quanto maior o sensor, maior será a resolução da câmera. A unidade de *pixel* é a unidade padrão de medida da resolução utilizada em medições com sistemas de visão (Anexo D).

3.4.2.1 Comparação entre sensor CCD e CMOS

Os sensores de visão têm evoluído nos últimos anos. No passado, os sensores CCD eram considerados superiores aos CMOS. Nos últimos anos, os sensores CMOS apresentaram considerável evolução na qualidade, velocidade de resposta e consumo de energia (ALPER, 2016).

O sensor CCD (dispositivo de carga acoplada) consiste em uma matriz de sensores sensíveis a luz, tipicamente fotodiodos, sob o controle de um circuito externo, onde cada fotodiodo transfere sua carga elétrica para um vizinho. Cada sensor tem um valor máximo de carga que pode ser armazenada, que depende, entre outros fatores, do tamanho do sensor. No CCD, as fotocélulas são montadas em uma

matriz com os sensores acoplados, conforme figura 10. Desta forma, a imagem pode ser obtida diretamente desta matriz na forma digital. São transferidos sinais elétricos referentes a linhas de acordo com a carga de cada ponto da matriz. (MEYER 2003, p. 25).

Figura 10 – Diagrama de um sensor CCD. Fonte: adaptação de FOTOFILE (2016)

Segundo ALPER, 2016, uma visão tradicional das vantagens relativas de um sensor CCD são:

- a) Alta sensibilidade em condições de baixa iluminação;
- b) Cores e imagem nítida;
- c) Alto nível de padronização entre sensores;
- d) Baixo nível de ruído de fundo.

O sensor CMOS (semicondutor de óxido metálico complementar), tipicamente utiliza fotodiodos como sensores sensíveis de luz. Em contraste ao CCD, a carga

armazenada nos fotodiodos não é transportada sequencialmente por um registrador de saída. Em vez disso, cada linha do CMOS pode ser selecionada diretamente pelo registrador de leitura através da linha e coluna, figura 11. O sensor CMOS atua como uma memória de acesso aleatório. Além disso, cada *pixel* tem seu próprio amplificador. Este tipo de sistema também é chamado de sensor de *pixel* ativo *APS* (*active pixel sensor*). Os sensores CMOS geralmente produzem um sinal de vídeo digital, assim, os *pixels* de cada linha da imagem são convertidos em paralelo com números digitais através de um conjunto de conversores analógico digital (STEGER, ULRICH e WIEDEMANN 2008, p.41-42).

Figura 11 – Diagrama de um sensor CMOS. Fonte: adaptação de FOTOFILE (2016)

A principal diferença que este sensor oferece é seu alto nível de integração na captura e processamento das imagens num único *chip*. Outro ponto importante é que esse *chip* pode ser implementado com microprocessadores, memórias ou qualquer outro circuito analógico ou digital (HORNBERG, 2006, p.373-375).

No ponto de vista de custo, a grande vantagem dos sensores CMOS é que estes são fabricados em linhas padrão de semicondutores, enquanto que os sensores CCD requerem uma linha de produção dedicada (MEYER 2003, p.25-26). Os sensores CMOS têm maior participação de mercado nas aplicações com sistema de

visão, em 2010 mais de 90% das câmeras utilizadas eram com sensor CMOS (ALPER, 2016).

3.4.3 Sistema óptico

Em aplicações com sistema de visão, o sistema óptico desempenha um papel importante no processamento de imagens, pois uma imagem é a incidência de luz sobre uma superfície de forma ordenada. A manipulação da luz pode acarretar consequências que facilitem ou inviabilizem totalmente a interpretação correta da imagem (EDMUND OPTICS, 2006, p. 264). O sistema de iluminação realça as características essenciais de um objeto, enquanto a lente é responsável por produzir uma imagem nítida sobre o sensor da câmera.

O sistema óptico é composto por fontes de iluminação, prismas, filtros, lentes, lentes telecêntricas e outros componentes ópticos que, em grupo, são utilizados para formar uma imagem do objeto com o objetivo de ressaltar as características que serão analisadas (PAVIM, COAN JUNIOR e SILVA 2002, p. 4). Tais sistemas são indispensáveis na obtenção de imagens com alta definição, homogêneas e robustas em relação à variabilidade de luz no ambiente. Além da iluminação, outros fatores podem interferir na quantidade de luz que incide sobre o sensor da câmera, fatores como: abertura da lente, magnitude primária, configuração da câmera, tempo de exposição do obturador (*shutter speed*) e filtros.

3.4.3.1 Lentes ópticas

Lentes ópticas são componentes ópticos concebidos para focalizar ou divergir a luz de forma ordenada, para formar a imagem sobre o sensor da câmera, seja ele CCD ou CMOS. Uma lente óptica pode consistir de um único elemento ou em múltiplos elementos. O objetivo da lente é criar uma imagem nítida, a fim de facilitar o realce dos detalhes da imagem (EDMUND OPTICS, 2016a).

As lentes estão diretamente relacionadas a uma série de fatores que contribuem para a qualidade da imagem, incluindo amplificação primária; amplificação

do sistema; erros geométricos (distorções) e de perspectiva. Sua especificação depende de dados como o tamanho do sensor, resolução, distância focal, distância de trabalho, e tipo de montagem da câmera (EDMUND OPTICS, 2016b), conforme figura 12.

Figura 12 – Propriedades das lentes.

A distância de trabalho da câmera para o objeto é definida pela lente e tem interferência direta na profundidade de campo, campo de visão e resolução da imagem. Fonte: adaptação de (EDMUND OPTICS, 2016c)

Na visão de SIPPEL (2006), é necessário considerar quatro aspectos importantes para especificação de uma lente:

- a) Distância focal (focal lenght): a função da lente é trazer os raios de luz que chegam a sua superfície para um ponto focal. A distância da lente a este ponto focal é chamada distância focal;
- b) Abertura da lente (*lens aperture*): a abertura controla a quantidade de luz que passa através da lente;
- c) Profundidade de campo (*depth of view*): é o máximo deslocamento permitido ao objeto inspecionado sem que este perca o foco. Uma lente, ao focalizar um objeto, também focaliza uma área correspondente a parte dianteira e traseira do objeto. Esta área é conhecida como profundidade de campo;
- d) Tipo de montagem da lente (*lens flange focal distance*): é a distância entre e a face de montagem da lente e o plano da imagem. Existem dimensões padronizadas, sendo as mais comuns do tipo C, CS e F. Outro detalhe é que uma lente do tipo C deve ser usada em uma câmera com montagem do tipo C e uma lente do tipo CS deve ser usada em uma câmera com montagem do tipo CS;
- e) Campo de visão (*field of view*): é a área do objeto a ser inspecionada. A distância focal da lente determina o campo de visão. Quanto maior o campo de visão da lente, menor será a distância focal.

3.4.3.2 Sistema de Iluminação

O objetivo da iluminação num sistema de visão é tornar visíveis as características importantes de uma imagem e a supressão das características indesejáveis, em outras palavras, é ressaltar as características de interesse dos objetos e atenuar as partes da imagem que não interessam à aplicação (STEGER, ULRICH e WIEDEMANN, 2008, p.5). A iluminação controla a visibilidade de falhas e características dos objetos inspecionados de forma a facilitar a inspeção pelo sistema de visão, sendo que a escolha da iluminação depende da aplicação. Encontrar a melhor iluminação para a aplicação é resultado de experimentos baseados em uma abordagem teórica e experimental (HORNBERG, 2006, p.50-51).

Segundo EDMUND OPTICS (2016c), frequentemente, empresas enfrentam problemas de contraste e resolução nos sistemas de captura de imagem, por subestimarem a importância do sistema de iluminação. Na realidade, a qualidade desejada de uma imagem pode ser obtida simplesmente melhorando a iluminação do sistema, ao invés de investir em sensores com maior resolução, lentes ou *software*. Todos os esforços investidos para obtenção da iluminação ideal irão aumentar o desempenho e confiabilidade do sistema, além de diminuir a complexidade do *software* (HORNBERG, 2006, p.50-51).

A iluminação é um fator de extrema importância num sistema de visão. Uma iluminação imprópria pode causar vários problemas na captura da imagem, chegando até a inviabilizar a aplicação. Excesso de brilho ou sombras podem esconder informações importantes da imagem, como trincas e falhas em peças metálicas. Além disso, podem causar falsos cálculos ao medir extremidades, resultando em medidas inexatas (EDMUND OPTICS, 2016c).

Em HORNBERG (2006, p.51), importantes fatores para especificar uma iluminação capaz de maximizar os contrastes de um objeto são listados:

- a) Direção da luz: pode ser difusa (em todas as direções), ou dirigida em um determinado ângulo;
- b) Espectro da luz: influência no contraste, efeitos como fluorescência ou a influência de luz infravermelha ou ultravioleta devem ser verificados, bem como filtros ópticos;
- c) Polarização: o efeito da polarização destaca contrastes de objetos e bloqueia reflexos excessivos, principalmente quando aplicado em objetos com metal ou vidro.

Outros fatores podem influenciar diretamente na iluminação de um sistema de visão, como a abertura da lente, o que proporciona a entrada de mais ou menos luz na câmera, ou fatores externos, como lâmpadas fluorescentes próximas a câmera ou até mesmo a luz solar que varia ao longo do dia e pode alterar o resultado da inspeção. Uma solução para esse tipo de problema é enclausurar a câmera juntamente com a iluminação artificial do sistema.

3.4.3.2.1 Tipos de iluminação

A luz pode interagir com objetos de várias maneiras, refletindo mais em determinadas superfícies e menos em outras. A microestrutura do objeto (essencialmente a rugosidade da superfície) determina o quanto à luz será refletida (STEGER, ULRICH e WIEDEMANN, 2008, p. 9). O fenômeno da reflexão consiste basicamente da luz que se propaga em um meio transparente. O mesmo autor complementa que a reflexão luminosa pode ocorrer tanto por reflexão difusa como por reflexão especular. A reflexão difusa ocorre quando a luz incide em uma superfície rugosa e retorna para o meio de origem. Nesse tipo de reflexão, feixes luminosos paralelos entre si, quando incidem na superfície rugosa são refletidos em direções aleatórias, conforme figura 13b. Na reflexão especular, a superfície de incidência é plana e lisa, como por exemplo um espelho, onde todos os feixes que incidirem com a mesma direção serão refletidos com o mesmo ângulo. Feixes de luz paralelos que incidirem sobre uma superfície plana e lisa, como mostra a figura 13a, continuarão paralelos após a reflexão (ABRAMOWITZ, 2016).

Figura 13 – Tipos de reflexão. (a) reflexão especular, (b) reflexão difusa. Fonte: adaptação de ABRAMOWITZ (2016)

Com base na teoria acima, HORNBERG (2006, p.51) conceitua que as principais técnicas de iluminação podem ser: iluminação de fundo (*backlight*) e iluminação frontal (*frontlight*). A técnica de iluminação de fundo consiste em iluminar o objeto por detrás, dessa forma os raios de luz são direcionados diretamente para a

câmera e a *silhueta* da peça é projetada. Esse tipo de iluminação é largamente utilizado em aplicações de medição. Na iluminação frontal, o objeto é iluminado diretamente e a luz é refletida na câmera.

Existem inúmeras técnicas de iluminação frontal, cuja sua especificação depende do tipo de objeto que deve ser inspecionado. EDMUND OPTICS (2016c), destaca as seguintes:

- a) Iluminação axial difusa: composta por um emissor de luz e um semi-espelho, o feixe de luz é emitido sobre o semi-espelho que ilumina o objeto e bloqueia os feixes não perpendiculares a câmera;
- b) Iluminação anelar: iluminação coaxial montada diretamente sobre a lente, composta por um anel de luz, esse tipo de iluminação é o mais simples e conhecido do mercado;
- c) Iluminação dia nublado: a luz emitida da base da cúpula contra e sua parede fornecem uma iluminação uniforme em todas as direções, eliminando sombras.

Entre as técnicas descritas acima, KEYENCE (2016) complementa que existem diferentes fontes de luz, sendo o diodo emissor de luz ou *light emitting diode (LED*), o mais utilizado, isso em função do baixo custo, longa vida útil, baixo consumo de energia e variedade de cores. Existem também outras fontes de iluminação como: lâmpadas halógenas, lâmpadas de *xenon* e lâmpadas fluorescentes.

A escolha da iluminação correta é o fator que determina o sucesso ou fracasso da aplicação. Diversas técnicas de iluminação foram desenvolvidas para superar os obstáculos na iluminação de objetos, conforme figura 14, embora haja outros tipos de iluminação disponíveis no mercado (EDMUND OPTICS, 2016c).

Figura 14 – Tipos de iluminação para sistemas de visão.
(a) iluminação de fundo, (b) iluminação axial difusa,
(c) iluminação anelar, (b) iluminação de cúpula
Fonte: adaptação de (EDMUND OPTICS, 2016c)

A escolha de uma iluminação depende da necessidade da aplicação. Uma técnica em particular possibilita um sistema de visão realizar medições de perfil de peças em duas dimensões (2D), através de triangulação laser. Aplicações de medições 2D com sistemas de visão possibilitam controle de qualidade de peças, medições de aberturas, ranhuras, picos, vales e de superfícies planas em geral (LATIMER, 2016).

A triangulação laser se dá a partir da iluminação laser de linha, que reflete apenas o perfil da peça num sensor de luz de área ou de linha (CDD ou CMOS), conforme figura 15. No mercado, também são oferecidas soluções onde todos os elementos estão num único invólucro, com uma cabeça sensora e controlador dedicado (TARIN, 2016).

Figura 15 – Iluminação laser de linha para inspeção 2D. Feixe laser de linha refletido no sensor de imagem resulta no perfil da peça inspecionada Fonte: adaptação de LATIMER 2016.

4 MATERIAL E MÉTODOS

Neste capítulo, é descrita a metodologia aplicada para obtenção dos resultados, assim como os equipamentos utilizados nos testes em laboratório. Após finalizar os testes, os resultados das variações das gotas foram relacionados ao custo anual de tratamento de glaucoma com o impacto farmacoeconômico do problema.

A primeira variável importante para o estudo foi a forma de gerar a gota de forma uniforme, sem a intervenção de pessoas. Um dispositivo foi desenvolvido para acionamento automático dos frascos conta-gotas, com objetivo de padronizar o método de gotejamento, eliminando a manipulação humana, conforme proposto nos objetivos específicos.

Figura 16 – Dispositivo de gotejamento automático. O dispositivo montado em uma base de madeira com suporte para o frasco, posicionado a 90° (ângulo reto) e a gota instilada sobre papel alumínio. Fonte: do autor

O dispositivo de gotejamento da figura 16 é composto por solenoide de tração, com núcleo cilíndrico, ação eletromagnética com retorno por mola (anexo A) e temporizador eletromecânico (anexo B). O acionamento do dispositivo é por um botão de início, que alimenta o temporizador. O temporizador aciona a bobina do solenoide por intervalos de tempo de 200ms. Com a bobina acionada, o núcleo cilíndrico do solenoide atua, a haste avança e pressiona a lateral do frasco através de um orifício no suporte de fixação (figura 17). Ao pressionar o frasco, uma gota é expelida através do bico conta-gotas. Após o intervalo de acionamento a bobina do solenoide é desligada e a haste recua por ação de mola.

Figura 17 – Esquema acionamento automático de frasco de colírio. Na posição de repouso (a), o temporizador desligado. Ao acionar botão de início, temporizador aciona a solenoide, passando para posição (b) onde o frasco de colírio é acionado e a gota gerada. Fonte: do autor

A força de acionamento dos frascos foi assumida como constante, pois não foi realizada medição da força. O dispositivo de gotejamento foi validado a partir do cálculo da razão entre a soma da massa de 30 gotas geradas e medidas separadamente, com a massa de 30 gotas geradas continuamente (apêndice A), com erro de 2,53%.

A validação foi realizada no laboratório do CASO, do departamento de oftalmologia da UNIFESP, com temperatura controlada em 22°C e utilizando balança analítica calibrada e aferida (marca Ohaus, AR3130 - 310g/0,001g).

4.1 BICO CONTA-GOTAS

Para inspeção do bico conta-gotas, chamado na indústria de gotejador, foi selecionado um modelo da marca Gerresheimer (antiga Allplas). Os bicos são peças injetadas de polietileno de baixa densidade ou *low density polyethylen (LDPE*) e têm variação do tamanho da gota de ±20%, conforme fabricante (GERRESHEIMER, 2016).

Os critérios para seleção do gotejador foram: disponibilidade de amostra de 100 unidades de bicos gotejadores e frascos de polietileno; por ser de uma marca conhecida e disponível no mercado; e o gotejador ser aplicado em colírios de lágrima artificial, medicamento utilizado por exemplo, no tratamento de olho seco. Apenas um modelo de bico gotejador foi utilizado nesse trabalho e todos do mesmo lote.

A geometria do bico apresenta duas aberturas, denominadas de abertura externa, que fica na parte superior do bico e abertura interna, que está localizada na parte interna do bico, conforme ilustra a figura 18.

Figura 18 – Secção transversal do bico conta-gotas. Fonte: do autor

4.1.1 Processo de produção do bico

Os bicos são peças de *LDPE* produzidos através do processo de moldagem por injeção de termoplástico, o que consiste na fusão do polímero termoplástico, amolecido e injetado num molde. Quando resfriado, endurece e toma a forma final do molde. Após modelagem, a peça é extraída do molde (ROSATO, 2000, p. 25-27).

Toda moldagem por injeção requer certas tolerâncias dimensionais, uma vez que as condições de moldagem e o desenho do molde afetam a contração do material. Ainda sob as melhores condições, pode haver algumas pequenas variações na temperatura de massa do material, pressão de injeção, temperatura de molde ou ciclo total de injeção.

Na produção de peças de material plástico, a contração é um fator importante, devendo ser considerada, pois reflete diretamente nas dimensões do produto moldado. As tolerâncias dimensionais obtidas de acordo com o coeficiente de contração dos plásticos nem sempre são constantes, pois dependem de diversos fatores, tais como: inconstância das propriedades das matérias-primas empregadas em sua preparação, variações das fases do processo de fabricação, cujo controle exato nem sempre é possível e condições de moldagem (HARADA, 2008, p. 66-67). As tolerâncias comerciais alcançadas nos moldes são de: ±0,05mm para dimensões de até 25mm e aproximadamente ±0,001mm para cada mm adicional (ROSATO, 2000, p. 27).

A concepção e as características físicas do conta-gotas são pré-determinadas no seu projeto e podem sofrer variações no processo de produção (ROIZENBLATT *et al.*, 2001).

Além das variações dimensionais, outros defeitos comuns em peças moldadas, que podem afetar diretamente a qualidade dimensional de um bico conta-gotas, são: injeção incompleta, chupagem, bolhas e rebarbas (HARADA, 2008, p. 275-282), conforme figura 19.

 a) Injeção incompleta – quando na abertura externa, defeito facilmente detectável no controle de qualidade, ou no processo, via sistema de visão ou controle visual do operador;

- b) Chupagem ou bolhas pode ocorrer na parte interna do canal e não é visível, apenas com a peça em corte;
- c) Rebarbas podem ocorrer na abertura interna do bico e bloquear o fluxo do fluido.

Figura 19 – Defeitos de injeção em bicos conta-gotas.

Ao lado esquerdo da figura são apresentadas imagens capturadas pelo sistema de visão computacional, onde é possível identificar rebarbas nas aberturas internas dos bicos. No lado direito um bico cortado transversalmente com bolha na parte interno do canal. Fonte: do autor

4.2 INSPEÇÃO DOS BICOS

A inspeção dos bicos foi dividida em duas etapas complementares: medição das aberturas dos bicos e medição das massas das gotas. Os dados adquiridos na etapa de medição das aberturas foram cruzados com os dados da etapa de medição das massas das gotas, de forma a relacionar os diâmetros das aberturas com o tamanho das gotas dos respectivos bicos.

Antes de iniciar a medição das aberturas, foi necessário desenvolver padrões de famílias de bicos, uma vez que, devido as amostras dos bicos serem todas do mesmo lote, não havia referências de bicos defeituosas (com variações de medidas provenientes do processo de injeção). Dessa forma, foi assumida a premissa de que o lote estudado é um lote padrão, que passou pelo controle de qualidade do fabricante e foi enviado para o mercado.

A partir do pressuposto de que os bicos para teste eram todos sem defeitos, foi necessário simular variações nas aberturas internas e externas dos bicos. Para simular bicos com diâmetros relativos menores do que o padrão, foi aplicada tinta esmalte dentro das aberturas de 16 bicos. Uma gota de tinta foi aplicada na abertura externa dos bicos e, por gravidade, as gotas escorrem pelo canal até sair pela abertura interna, conforme figura 20. Para simular os bicos com diâmetros relativos maiores do que o padrão, foi adotado procedimento de esquentar os bicos em equipamento de banho maria (fabricante Evlab, modelo B.M.EV:015) por 5 minutos; retirar bico da água quente; inserir agulhas (fabricante BD, modelos 16G de 1,6mm e 14G de 2,1mm de diâmetro), através da abertura externa até passar pela abertura interna e; mergulhar os bicos imediatamente em um banho de água fria. No total outros 18 bicos passaram por esse processo. Para estabilizar possíveis contrações, todos os bicos simulados ficaram em repouso de 24horas antes de serem inspecionados.

Figura 20 - Simulação dos erros nos bicos.

Bicos simulados com tinta esmalte (a) cortados transversalmente. É possível visualizar o esmalte em toda cavidade; (b) vista de topo de bico simulado – (c) bico retirado do banho maria e com agulha inserida na abertura externa (d) o bico mergulhado em banho de água fria para receber choque térmico. Fonte: do autor

Nesses procedimentos, a intensidade dos erros, propositalmente, não foi controlada, porque o objetivo foi gerar diferentes famílias de escalas de diâmetros, quando comparados ao lote padrão.

A amostragem total dos bicos inspecionados foi de 49, sendo 16 bicos com aberturas reduzidas, 15 bicos padrão e 18 bicos com aberturas alargadas. As famílias de bicos foram denominadas respectivamente de BP, B e BG.

4.2.1 Inspeção dos diâmetros das aberturas dos bicos

Devido ao dimensional compacto das peças, assim como à complexidade da geometria dos bicos e dos defeitos, foi necessário avaliar dois sistemas de medição

distintos para a inspeção dos diâmetros internos das aberturas dos bicos, conforme proposto nos objetivos específicos.

Os resultados preliminares desse trabalho foram obtidos através de testes experimentais em laboratório com sistema de visão computacional, utilizando diferentes ferramentas computacionais de inspeção e técnicas de iluminação. Com objetivo de aumentar a resolução da inspeção, uma segunda tecnologia foi aplicada, utilizando sensor de medição a laser em 2D.

Os resultados das duas tecnologias foram comparados, pontuando a resolução na medição, estabilidade do sistema, tempo de resposta e facilidade de ajustes/programação.

Com a comparação dos resultados, foi selecionada a tecnologia de sistema de visão computacional, devido a estabilidade do sistema, facilidade de programação e tempo de inspeção. Os pontos negativos do sistema de medição com o sensor laser foram: tempo de medição de cada bico, que foi de 1 minuto por bico; e a instabilidade na medição, devido ao excesso de ruído decorrente da geometria interna do bico ser cônica e gerar muitos reflexos.

4.2.1.1 Inspeção por sensor laser 2D

A tecnologia do sensor laser 2D também pode ser considerada uma inspeção por sistema de visão dedicado, com iluminação laser de linha. O sistema utilizado na inspeção é formado por controlador da marca Omron, série ZG2 (anexo C), código ZG2-WDC11A e cabeça sensora ZG2-WDS3VT. O sensor de medição laser emite um feixe laser em formato de linha e o reflexo do laser retorna para a cabeça sensora e é capturado por um sensor de visão do tipo CMOS. A figura 21 ilustra o sistema de medição laser 2D. O controlador do sensor dispõe de uma tela de 3 polegadas e pode ser programado via software ou via botões no seu frontal. Essa etapa dos testes ocorreu no laboratório de automação da Omron do Brasil.

Figura 21 – Configuração do sensor de medição laser. O sensor CMOS captura a reflexão do feixe laser refletido na peça e, no perfil refletido, é possível realizar medições de largura entre pontos, picos e vales. Fonte: do autor

Uma mesa cartesiana servoacionada foi utilizada para deslocar a cabeça sensora linearmente sobre o bico, de forma a fazer uma varredura sobre a superfície do bico. O bico foi afixado na base da mesa cartesiana em um berço de polímero (nylon) e a cabeça sensora afixado no eixo Z da máquina, conforme figura 22.

Após afixar o bico e a cabeça sensora, o sistema foi referenciado. O eixo Y foi centralizado sobre o bico, ajustada a distância focal do sensor em 22mm. O eixo X programado para percorrer a superfície do bico, o movimento total do curso de 2,5mm com velocidade linear de 0,012mm/segundo.

Figura 22 – Mesa cartesiana com sensor de medição laser. Mesa cartesiana servoacionada do laboratório de automação da Omron do Brasil. Dispositivo utilizado para simulação de *pick-and-place* e treinamento de acionamentos. Em destaque, a cabeça sensora afixada na mesa e bico com feixe laser de linha sobre a abertura externa. Fonte: do autor

A coleta dos dados foi realizada com *software* de aquisição de dados dedicado do sensor, modelo *Smart Monitor*. O *software* permite amostragem de 300ms, ou seja, o ciclo para percorrer toda superfície do bico na velocidade ajustada. Foram capturados 694 pontos de medição.

O software gerou um arquivo do tipo CSV (comma separated values), com valores separados por vírgula, com a representação numérica dos valores da leitura dos pontos do perfil iluminado pelo laser de linha. A figura 23 ilustra a leitura do perfil do bico capturado pelo sensor.

Figura 23 – Imagens dos perfis capturadas pelo sensor laser. Sequência de imagens capturadas da leitura de um bico. A partir da lateral do bico, o feixe avança, começa a entrar na cavidade pela abertura externa, a abertura aumenta e chega ao ápice na oitava parte. Na sequência, começa a diminuir a abertura até o sensor chegar a lateral oposta ao início do movimento. Fonte: do autor

Os dados da leitura capturados pelo sensor foram carregados no *Matlab* e um gráfico 3D gerado com o perfil do bico e com a imagem de topo da abertura externa, figura 24.

Figura 24 – Gráfico 3D dos dados coletados e vista de topo do gráfico.

A figura da esquerda representa gráfico 3D plotado em *Matlab*, representa a abertura externa de um bico inspecionado. A figura da direita ilustra a vista superior do gráfico, obtido diretamente na planilha *Excel* carregada do *software* do sensor pelo arquivo *CSV*. Fonte: do autor

4.2.1.2 Inspeção com sistema de visão computacional

O sistema de visão computacional utilizado na medição dos diâmetros das aberturas dos bicos foi da marca Omron, modelo FZ5-L355 (anexo D), câmera de 2Megapixel com interface *CameraLink* e conjunto óptico formado por lente de 50mm/1:1.8, espaçador de 60mm e iluminação de fundo (tipo *backlight*) com LED branco, marca CCS, modelo LFX-100SW, conforme (figura 25). O controlador do sistema de visão é PC industrial dedicado, com *software* de programação embarcado. A programação realizada através de ferramentas de processamento e análise de dados pré-estabelecidas. Os testes com sistema de visão computacional foram realizados no laboratório de automação da Omron do Brasil.

Figura 25 – Configuração do sistema de visão computacional. A peça posicionada sobre iluminação de fundo, os feixes de luz passam pelas aberturas e são capturados pela câmera, que está afixada sobre o bico. Para visualização e programação, o monitor apresenta imagem do *software* dedicado. Fonte: do autor Para os testes, os bicos foram afixados no berço de polímero, o mesmo utilizado nos testes com sensor laser. O berço tem dois orifícios de encaixe para os bicos, um para inspeção da abertura externa e outro para inspeção da abertura interna, conforme destaque na figura 26, ambos vazados para passagem da luz.

O berço foi afixado sobre a iluminação de fundo e tem função de estabilizar os bicos e garantir o posicionamento. A iluminação de fundo visa a realçar o perfil interno das aberturas do bico e dar contraste a *silhueta* das aberturas, eliminando sobras e reflexos indesejados.

Figura 26 – Sistema de visão em laboratório. Configuração montada no laboratório de automação da Omron. Em destaque, a vista de topo do berço com dois bicos, posicionando abertura externa e abertura interna. Fonte: do autor

Foi desenvolvido programa para inspeção das aberturas externas no *software* do controlador, conforme ilustrado na figura 27. A ferramenta de inspeção aplicada para medição dos diâmetros é chamada c*ircular scan edge position* (*CSEP*). A c*ircular scan edge position* é uma ferramenta circular que identifica o centro da imagem a partir do contraste entre as áreas externa e interna. A ferramenta circular foi dividida em vinte partes para medição do diâmetro, pós isso foi calculada a média das medidas.

Com o sistema montado e o programa finalizado, foi realizada a aquisição das imagens, com o controlador em modo trabalho (*run*).

Figura 27 – Programa de medição do sistema de visão computacional. Programa é composto por ferramentas de processamento e análise de imagens. Em destaque, na lateral direita, o programa. Primeiro, é necessário identificar a porta e modelo da câmera; em seguida, uma ferramenta de processamento de imagem para realçar o contraste de fundo e definir a região de interesse na imagem (*ROI*); uma ferramenta para identificar o nível de foco e; a ferramenta *CSEP*. O mesmo programa foi utilizado para medição da abertura interna e externa, a diferença está nos ajustes de área de inspeção. Fonte: do autor

Cada bico foi inspecionado individualmente, os valores dos diâmetros das aberturas registrados em uma tabela e as imagens armazenadas. O conjunto parcial de imagens dos bicos é apresentado no apêndice B.

Após a inspeção os bicos, foram identificados e acondicionados separadamente, os arquivos das imagens nomeados com a mesma numeração dos respectivos bicos. Esse processo foi repetido em toda amostragem dos 49 bicos para inspeção das aberturas externa e interna.

4.3 INSPEÇÃO DAS GOTAS DOS BICOS

A etapa de medição das massas ocorreu no laboratório do Centro Avançado de Superfície Ocular (CASO), do departamento de oftalmologia, da Universidade Federal de São Paulo, UNIFESP-EPM.

Nessa etapa, a temperatura do laboratório foi controlada em 22°C e foram utilizados os seguintes itens: dispositivo de gotejamento automático; balança analítica (marca Ohaus, AR3130-310g/0,001g); frascos plásticos de *LDPE* (marca GerresHeimer, 10ml, Ø22mmx52mm); folhas de papel alumínio de 4cm x 4cm; e água destilada, conforme figura 28. No experimento, foi utilizada água destilada para gerar as gotas, com objetivo de controlar as variáveis de viscosidade e tensão superficial.

Figura 28 – Dispositivos para medição das massas das gotas. Dispositivo montado no Laboratório CASO da UNIFESP, com balança analítica, dispositivo de gotejamento automático e computador para registro das massas das gotas. Fonte: do autor

O processo de medição das massas seguiu o fluxograma da figura 29, onde, em cada bico, foram geradas e medidas dez gotas. A fim de evitar que um possível erro de fadiga do dispositivo de gotejamento influenciasse na formação das gotas, foi adotado procedimento de gerar e pesar as gotas dos bicos BP, B e BG intercaladamente. A folha de papel alumínio foi medida separadamente e sua massa subtraída da massa do conjunto folha mais gota. O processo foi repetido em todos os bicos e, a cada troca de bico, o frasco foi preenchido com 10ml de água destilada.

Figura 29 – Fluxograma do processo de medição das massas das gotas. Na metodologia de medição das massas das gotas, em cada bico foram geradas 10 gotas e o fluxo foi repetido até completar os 49 bicos (no fluxograma não foi contemplado contador de bicos para fim do processo). Fonte: do autor

5 RESULTADOS

Neste capítulo, são apresentados os resultados obtidos nas etapas de inspeção das aberturas dos bicos conta-gotas e da medição das massas das gotas, correlacionando os resultados de forma a compreender a influência da variação do diâmetro das aberturas, provenientes do processo de produção, com a variação no tamanho das gotas de colírio.

O sistema de medição adotado para inspeção das aberturas foi o de visão computacional. O sensor de medição laser não foi qualificado, devido aos resultados com ruído na leitura dos bicos com aberturas reduzidas. A explicação para o ruído na leitura se dá pelo ângulo fechado da parte interna do cone da abertura que reflete o laser do sensor em diferentes posições.

Para medição das aberturas, foi adotada unidade de medida de pixel (uindade de imagem digital), padrão para sistemas de visão industriais.

A resolução do sistema de visão, conforme fabricante (anexo D), é na proporção de subpixel. Os resultados foram relacionados percentualmente ao desvio padrão das aberturas, posteriormente esse desvio padrão foi relacionado ao percentual de variação do tamanho da gota.

Foram inspecionadas aberturas de 49 bicos e gerado registro das imagens das aberturas externa e interna, num total de 98 imagens, apresentadas parcialmente no apêndice B. Na etapa de medição das massas, foram medidas 490 gotas, 10 de cada bico e os valores registrados e apresentados no apêndice C.

Os resultados compilados das medições das abertruras e das medidas das gotas é apresentado na tabela 3.

Tabela 3 – Compilação dos resultados das medições.

Na coluna com o valor das massa das gotas, representa a média de dez gotas de cada bico; Na coluna Abertura Externa e Abertura Interna as tomadas individuais de medição com sistema de visão das aberturas, unidade em *píxel*. Fonte: do autor

	10		
Bicos	Massa da gota (g)	Abertura Externa (pixel)	Abertura Interna (pixel)
Bico 1	35,70 mg	456,3 pixel	319,6 pixel
Bico 2	30,70 mg	468,4 pixel	143,2 pixel
Bico 3	32.80 mg	480.5 pixel	320.3 pixel
Bico 4	38.70 mg	486.8 pixel	272.6 pixel
Bico 5	37.30 mg	489.5 pixel	297,8 pixel
Bico 6	23.60 mg	491.5 pixel	142.2 pixel
Bico 7	30.90 mg	491.8 pixel	236.9 pixel
Bico 8	41.80 mg	498.2 pixel	276.4 pixel
Bico 9	34.90 mg	505.4 pixel	318.1 pixel
Bico 10	32,20 mg	506.2 pixel	315.0 pixel
Bico 11	21,80 mg	508,8 pixel	319,3 pixel
Bico 12	26,90 mg	509,5 pixel	317,9 pixel
Bico 13	34.00 mg	510.5 pixel	316.3 pixel
Bico 14	38,50 mg	511,8 pixel	323,5 pixel
Bico 15	33,00 mg	512,1 pixel	322,0 pixel
Bico 16	27,50 mg	512,1 pixel	215,8 pixel
Bico 17	26,30 mg	512,3 pixel	344,3 pixel
Bico 18	44,80 mg	512,3 pixel	258,0 pixel
Bico 19	39,40 mg	512,4 pixel	302,1 pixel
Bico 20	31,90 mg	512,4 pixel	337,3 pixel
Bico 21	41,40 mg	512,8 pixel	260,4 pixel
Bico 22	38,50 mg	513,4 pixel	320,3 pixel
Bico 23	27,60 mg	513,5 pixel	317,7 pixel
Bico 24	26,10 mg	514,1 pixel	327,4 pixel
Bico 25	31,90 mg	514,1 pixel	318,5 pixel
Bico 26	31,30 mg	514,1 pixel	320,0 pixel
Bico 27	39,60 mg	514,2 pixel	312,0 pixel
Bico 28	24,40 mg	514,2 pixel	327,9 pixel
Bico 29	30,50 mg	514,8 pixel	331,0 pixel
Bico 30	39,20 mg	514,8 pixel	317,8 pixel
Bico 31	27,30 mg	514,9 pixel	372,6 pixel
Bico 32	37,30 mg	515,3 pixel	322,7 pixel
Bico 33	42,40 mg	515,4 pixel	319,8 pixel
Bico 34	29,30 mg	515,9 pixel	329,3 pixel
Bico 35	31,90 mg	516,0 pixel	309,0 pixel
Bico 36	31,40 mg	516,4 pixel	322,1 pixel
Bico 37	27,30 mg	516,6 pixel	339,0 pixel
Bico 38	39,10 mg	516,8 pixel	318,4 pixel
Bico 39	25,90 mg	517,1 pixel	202,2 pixel
Bico 40	31,80 mg	517,2 pixel	314,0 pixel
Bico 41	38,40 mg	517,4 pixel	329,5 pixel
Bico 42	38,80 mg	518,4 pixel	320,4 pixel
Bico 43	21,80 mg	519,0 pixel	320,5 pixel
Bico 44	27,70 mg	519,2 pixel	342,2 pixel
Bico 45	52,00 mg	520,4 pixel	345,9 pixel
Bico 46	29,50 mg	522,1 pixel	272,7 pixel
Bico 47	25,27 mg	522,3 pixel	386,8 pixel
Bico 48	30,00 mg	522,7 pixel	318,1 pixel
Bico 49	45,40 mg	522,7 pixel	277,2 pixel

Para análise dos resultados, todos os dados foram compilados com as médias das massas de dez gotas medidas de cada bico e os respectivos valores das aberturas externa e interna com unidade de imagem *pixel*. A unidade *pixel* não faz parte do sistema internacional de medidas, mas é uma unidade padrão utilizada em sistemas de visão industriais.

Os resultados das medidas das massas das gotas apresentou resultado não linear, com variação de ±20% com relação à média total, não superior ao indicado pelo fabricante dos bicos, figura 30.

A linha azul representa a medida das médias das dez gotas de cada bico inspecionado, com a escala em miligramas do lado direito do gráfico; a linha vermelha representa as medidas da abertura externa, o gráfico está ordenado por esse valor; a linha verde representa as medidas da abertura interna. Na escala das aberturas do lado esquerdo, é possível identificar a diferença entre os diâmetros externo e interno. Fonte: do autor

A variação da abertura externa foi de ±3% e da abertura interna de ±16%. Com objetivo de simular o processo de produção, nenhuma medida foi fixada, ou seja, a relação entre as aberturas varia de forma não linear.

As medidas da tabela 3 foram compiladas e três fatores considerados para análise da variação do tamanho das gotas: relação entre as aberturas; abertura externa e; abertura interna. Os resultados foram divididos em três subgrupos de famílias, cada subgrupo é formado pela média aritimética de 16 bicos, com os resultados das aberturas, assim como da relação entre as aberturas, conforme apresenta tabela 4.

Os subgrupos possibilitam a visualização do comportamento do tamanho das gotas, conforme o estudo isolado de cada uma das aberturas, assim como com a sua relação.
Tabela 4 – Compilação dos resultados das medições e grupos de famílias. Os grupos abertura externa, abertura interna e relação das aberturas foram subdivididos em três grupos numerados de 1 a 3. O subgrupo 1 tem as células vermelhas, subgrupo 2 células azuis e; subgrupo 3 células verdes, acompanhando as cores dos gráficos. Fonte: do autor

Bicos	Massa da gota	Abertura Externa	Abertura Interna	Grupo Abertura Externa	Grupo Abertura Interna	Grupo Relação Aberturas
Bico 1	35,70 mg	456,3 pixel	319,6 pixel	1	2	1
Bico 2	30,70 mg	468,4 pixel	143,2 pixel	1	1	3
Bico 3	32,80 mg	480,5 pixel	320,3 pixel	1	2	1
Bico 4	38,70 mg	486,8 pixel	272,6 pixel	1	1	3
Bico 5	37,30 mg	489,5 pixel	297,8 pixel	1	1	3
Bico 6	23,60 mg	491,5 pixel	140,0 pixel	1	1	3
Bico 7	30,90 mg	491,8 pixel	236,9 pixel	1	1	3
Bico 8	41,80 mg	498,2 pixel	276,4 pixel	1	1	3
Bico 9	34,90 mg	505,4 pixel	318,1 pixel	1	2	1
Bico 10	32,20 mg	506,2 pixel	315,0 pixel	1	1	2
Bico 11	21,80 mg	508,8 pixel	319,3 pixel	1	2	2
Bico 12	26,90 mg	509,5 pixel	317,9 pixel	1	2	2
Bico 13	34,00 mg	510,5 pixel	316,3 pixel	1	2	2
Bico 14	38,50 mg	511,8 pixel	323,5 pixel	1	3	1
Bico 15	33,00 mg	512,1 pixel	322,0 pixel	1	2	2
Bico 17	26,30 mg	512,3 pixel	344,3 pixel	1	3	1
Bico 16	27,50 mg	512,1 pixel	215,8 pixel	2	1	3
Bico 18	44,80 mg	512,3 pixel	258,0 pixel	2	1	3
Bico 19	39,40 mg	512,4 pixel	302,1 pixel	2	1	3
Bico 20	31,90 mg	512,4 pixel	337,3 pixel	2	3	1
Bico 21	41,40 mg	512,8 pixel	260,4 pixel	2	1	3
Bico 22	38,50 mg	513,4 pixel	320,3 pixel	2	2	2
Bico 23	27,60 mg	513,5 pixel	317,7 pixel	2	2	2
Bico 24	26,10 mg	514,1 pixel	327,4 pixel	2	3	1
Bico 25	31,90 mg	514,1 pixel	318,5 pixel	2	2	2
Bico 26	31,30 mg	514,1 pixel	320,0 pixel	2	2	2
Bico 27	39,60 mg	514,2 pixel	312,0 pixel	2	1	3
Bico 28	24,40 mg	514,2 pixel	327,9 pixel	2	3	1
Bico 29	30,50 mg	514,8 pixel	331,0 pixel	2	3	1
Bico 30	39,20 mg	514,8 pixel	317,8 pixel	2	2	2
Bico 31	27,30 mg	514,9 pixel	372,6 pixel	2	3	1
Bico 34	29,30 mg	515,9 pixel	329,3 pixel	2	3	1
Bico 32	37,30 mg	515,3 pixel	322,7 pixel	3	3	2
Bico 33	42,40 mg	515,4 pixel	319,8 pixel	3	2	2
Bico 35	31,90 mg	516,0 pixel	309,0 pixel	3	1	3
Bico 36	31,40 mg	516,4 pixel	322,1 pixel	3	3	2
Bico 37	27,30 mg	516,6 pixel	339,0 pixel	3	3	1
Bico 38	39,10 mg	516,8 pixel	318,4 pixel	3	2	2
Bico 39	25,90 mg	517,1 pixel	202,2 pixel	3	1	3
Bico 40	31,80 mg	517,2 pixel	314,0 pixel	3	2	3
Bico 41	38,40 mg	517,4 pixel	329,5 pixel	3	3	1
Bico 42	38,80 mg	518,4 pixel	320,4 pixel	3	3	2
Bico 43	21,80 mg	519,0 pixel	320,5 pixel	3	3	2
Bico 44	27,70 mg	519,2 pixel	342,2 pixel	3	3	1
Bico 45	52,00 mg	520,4 pixel	345,9 pixel	3	3	1
Bico 46	29,50 mg	522,1 pixel	272,7 pixel	3	1	3
Bico 47	25,27 mg	522,3 pixel	386,8 pixel	3	3	1
Bico 48	30,00 mg	522,7 pixel	318,1 pixel	3	2	3
Bico 49	45,40 mg	522,7 pixel	277,2 pixel	3	1	3

A análise da abertura externa aponta relação direta do tamanho da gota com o diâmetro da abertura, ou seja, à medida que a abertura externa aumenta, a gota aumenta proporcionalmente, resultado consistente com a Lei de Tate. A figura 31 apresenta a variação no tamanho das gotas relacionada a abertura externa. Uma variação na abertura externa de $\pm 2,3\%$ representa uma variação no tamanho da gota de $\pm 2,6\%$.

Os subgrupos apresentados ilustram variação crescente das gotas, conforme abertura externa, o subgrupo 1 (vermelho) uma média de bicos com valor de 496 *pixels*, subgrupo 2 (azul) uma média de bicos com valor de 514 *pixels* e subgrupo 3 (verde) uma média de bicos com valor de 518 *pixels*. Fonte: do autor

A abertura interna tem relação inversa ao tamanho da gota, ou seja, à medida que a abertura aumenta, a gota diminui de tamanho, resultado consistente com estudo de SANTVLIET e LUDWIG (2004), conforme figura 32. Esse resultado representa uma variação na abertura interna de $\pm 14\%$, o que representa uma variação na gota de $\pm 5,4\%$.

A relação entre as aberturas é outro fator determinante, que indica a necessidade de controle e análise das duas aberturas. O resultado apresentado na figura 33 demonstra aumento do tamanho das gotas proporcionalmente à relação entre as aberturas.

A investigação dos bicos mostrou que não basta realizar o controle isolado de uma das aberturas, pois a relação entre elas pode provocar aumento da gota, até que haja gotejamento duplo, no caso de uma relação mais próxima de 1.

Figura 33 – Variação da gota pela variação da relação das aberturas. Os subgrupos apresentados, ilustram variação crescente das gotas conforme aumento da relação entre a abertura externa e interna. O subgrupo 1 (vermelho) relação de 1,51, subgrupo 2 (azul) relação de 1,61 e subgrupo 3 (verde) relação de 2,06 Fonte: do autor

Em uma análise farmacoeconômico, ao relacionar o custo de um tratamento à variação do tamanho da gota, como por exemplo, um tratamento de glaucoma, com uso diário do medicamento Alphagan®, com posologia de uma gota aplicada em cada olho, duas vezes ao dia, total de 4 gotas por dia. Considerando uma gota média de 40µl (LEDERER e HAROLD, 2015), um frasco de 5ml tem duração média de 31 dias, ou 125 gotas (ROIZENBLATT *et al.*,2001; LEDERER e HAROLD, 2015). Um frasco de Alphagan® de 5ml, tem custo médio para consumidor no estado de São Paulo de R\$ 87,07, com custo anual de tratamento de R\$ 1.044,84, conforme ANVISA (2016).

Conforme resultados obtidos, uma variação na abertura externa de $\pm 2,3\%$ representa uma variação na gota de $\pm 2,6\%$, ou seja um frasco de 5ml que entrega 125 gotas pode variar em até 13 gotas. A abertura interna com variação de de $\pm 14\%$ entrega uma gota com variação de $\pm 5,4\%$, o que equivale a uma variação de até 27 gotas, o que representa uma redução do frasco de 5ml de 17,7%, ou seja, o prejuízo financeiro anual ao paciente para manutenção desse tratamento pode chegar a R\$ 174,12, conforme tabela 5.

Tabela 5 – Comparação custo anual com tratamento de glaucoma. Tratamento anual com gota de 20µl representa 57% de um salário mínimo referência 2016 de R\$ 880,00; com uma gota de 40µl representa 118% de um salário mínimo e; com uma gota de 49µl (com a soma do erro do processo na abertura), com custo anual superior a 138% de um salário mínimo.

Salário mínimo	G	ota ideal (20µl)	Ö	iota real (40µl)	Gota erro processo (49µl)				
%		57,0%		118,7%	138,5%				
Custo anual	R\$	501,52	R\$	1.044,84	R\$	1.218,98			

/0	ue	um	Sai	ano	11111
	Fo	nte:	do	auto	or.

A OMS estima cerca de 900 mil brasileiros com glaucoma (KINGMAN, 2004; GONÇALVES *et al.*,2016). Na hipótese de ampliar o valor do desperdício pela variação do bico para a população de brasileiros com glaucoma, isso representa um valor superior a R\$ 156 milhões.

6 DISCUSSÃO E CONCLUSÕES

Neste presente trabalho, observou-se influência da variação das aberturas de bicos conta-gotas no tamanho da gota de colírios.

O estudo ficou limitado a investigação de um lote único de bico. Um estudo com apoio da indústria, onde fosse possível investigar diferentes lotes com variações reais do processo, auxiliariam na acurácia dos resultados. Mesmo estudando um lote único, foi possível identificar variações nas aberturas dos bicos que não passaram pelo processo de simulação dos erros, o que indica real variação nas medidas provenientes do processo de injeção, onde a abertura interna apresentou variação de $\pm 2,5\%$ e abertura externa variação de $\pm 1,6\%$.

O dispositivo de gotejamento automático utilizado na etapa de medição das massas das gotas não dispunha de controle da força e velocidade de acionamento dos frascos, o que sugere para estudos futuros um dispositivo servo acionado para controle preciso do acionamento, onde seja possível identificar as grandezas físicas associadas ao acionamento do frasco.

Para inspeção das aberturas, foram utilizados dois sistemas de medição: sensor de medição laser e; sistema de visão computacional. Ambos foram avaliados e foi selecionado o sistema de visão computacional. O sensor de medição laser não foi qualificado devido ao excesso de ruído na leitura dos bicos com aberturas reduzidas. Isso se explica devido ao ângulo fechado da parte interna do cone da abertura que reflete o laser do sensor em diferentes posições. A inspeção com sistema de visão apresentou maior complexidade ao ajustar o foco do sistema óptico com as aberturas dos bicos, pois com a utilização de espaçadores nas lentes, faz com que a distância focal da lente seja reduzida. Isso na prática significa que a variação da distância para ajuste do foco entre a lente e a abertura do bico fosse menor do que 1mm.

Na etapa de inspeção dos bicos, todos os que foram cortados, para visualização da secção transversal, apresentaram uma bolha interna, indicando falha no processo de injeção. Essa etapa mostrou que a variação nas aberturas internas tem maior relevância no tamanho das gotas. Também nas aberturas internas, foi identificada maior variação no desvio padrão das aberturas dos bicos considerados padrão. No processo de produção, assim como no controle de qualidade, a abertura

externa prevalece com relação a interna, inclusive pelo fato de o usuário final ter acesso apenas a abertura externa. Com isso se faz necessário um controle igualitário das aberturas através de sistema de inspeção visual na linha de produção.

Os resultados do estudo apontam que o erro no processo de produção pode, de fato, influenciar no tamanho da gota de colírio. E o estudo farmacoeconômico aponta o impacto financeiro no custo anual para o consumidor, não levando em consideração o custo para o sistema de saúde e trabalhista brasileiro. Relacionando a influência da variação das aberturas no tamanho das gotas, com o custo de um tratamento, como por exemplo de glaucoma, auxilia a percepção da gravidade do problema. O número de gotas em cada frasco determina o seu rendimento e o volume da gota superior ao recomendado acarreta menor duração do frasco, maior custo anual do tratamento com desperdício significativo e prejuízo ao consumidor. Além do fator financeiro, um volume de gota superior ao recomendado pode trazer prejuizos a saúde em adultos e crianças, onde há relatos de absorção sistêmica do fármaco via mucosa nasal (SANTVLIET e LUDWIG, 2004). O impacto financeiro na renda familiar, especificamente para os idosos, que sofrem com maior prevalência de problemas oculares, é um importante fator de abandono do tratamento de glaucoma (SILVA, L. R., 2010; BUSCACIO e COLOMBINI, 2016). Com uma projeção para o futuro onda a população brasileira de idosos vai avançar de 7,9% para 13,4% em 2030 (IBGE, 2015), esse problema tende a se agravar.

Baseado nos resultados das inspeções das aberturas dos bicos, conclui-se que o processo de produção pode sim afetar o diâmetro das aberturas dos bicos e que o controle de qualidade das peças deve ser rigoroso. A técnica de inspeção por sistemas de visão computacional é uma solução efetiva e eficaz não apenas para incremento da repetibilidade e confiabilidade, mas também por obter mais informações relevantes do processo que podem auxiliar na gestão da produção. Atualmente, a indústria aplica técnicas para controle de qualidade de peças injetadas, mas a adoção de sistemas de visão computacional na linha de produção pode aprimorar esse controle com inspeção automática não apenas da abertura externa, assim como a abertura interna, com 100% das peças inspecionadas.

A importância de aprimorar o controle de qualidade dos bicos ganha ainda mais relevância ao considerar que os bicos utilizados atualmente entregam uma gota com volume duas vezes superior ao recomendado. A partir do erro atual, fazem-se necessários novos estudos para propor um projeto de bico com aberturas menores, que entreguem gotas com volume próximo a 20µl. Um bico com aberturas reduzidas tende a maiores contrações relativas ao dimensional dos bicos decorrentes do processo de injeção, o que requer rigoroso controle no processo de produção, assim como controle de qualidade para evitar discrepâncias nas variações.

Como proposta para estudo e ações futuras, o desenvolvimento de um dispositivo de posicionamento e inspeção de bicos na saída de injetoras e proposta de um grupo de estudos na Associação Brasileira de Normas Técnicas (ABNT) para normatização da produção de bicos conta-gotas no Brasil.

REFERÊNCIAS

ABRAMOWITZ, M. *Specular and Diffuse Reflection*. Disponível em: <http://micro. magnet.fsu.edu/primer/java/reflection/specular/index.html>. Acesso em: 20 jul. 2016.

AIA. *North american machine vision market sets record*. Disponível em: http://www.aerospacemanufacturinganddesign.com/article/north-american-machine-vision-record-090815/. Acesso em: 28 jun. 2016.

ALBUQUERQUE, M. P.; ALBUQUERQUE, M. P. **Processamento de imagens**: métodos e análises. Disponível em: <www.cbpf.br/cat/pdsi/pdf/Processamento Imagens.PDF>. Acesso em: 27 abr. 2009.

ALPER, Gretchen. *CCD vs. CMOS Image Sensors in Machine Vision Cameras*. Disponível em: http://info.adimec.com/blogposts/bid/39656/CCD-vs-CMOS-Image-Sensors-in-Machine-Vision-Cameras. Acesso em: 28 jun 2016.

ANVISA. Câmara de regulação do mercado de medicamentos- CMED secretaria executiva: Preços máximos de medicamentos por princípio ativo. Disponível em: http://portal.anvisa.gov.br/documents/374947/2829072/LISTA+CONFORMIDADE_2 016-08-19.pdf/260ac1ae-a1c9-4847-9fec-13b98e8e8d6e>. Acesso em: 27 ago. 2016.

ANVISA. **RDC Nº 54**: dispõe sobre a implantação do sistema nacional de controle de medicamentos e os mecanismos e procedimentos para rastreamento de medicamentos na cadeia dos produtos farmacêuticos e dá outras providências. Brasilia, 2013.

BANGERT, M. *The evolution of machine vision*. 2006. Disponível em: <www.vision sensorsmag.com/Articles/Column/BNP_GUID_9-5-2006_A_1000000000000096297 >. Acesso em: 24 set. 2012.

BAUR, C.; WEE D. *Manufacturing's next act.* Disponível em: http://www.mckinsey.com/business-functions/operations/our-insights/manufacturings-next-act. Acesso em: 08 mar. 2016.

BUSCACIO, E. S.; COLOMBINI, G. N. U. I. Estudo sobre os fatores relacionados a interrupção do tratamento do glaucoma. Disponível em: ">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.scielo.php?script=sci_arttext&pid=S0034-72802011000600007&lng=pt&nrm=iso&tlng=en>">http://www.scielo.sci

CIENTISTAS ASSOCIADOS. **Solução em visão computacional**: processamento,análise e interpretação para tomada de decisão. Disponível em: <www.cientistasassociados.com.br>. Acesso em: 28 mar. 2009.

COGNEX. *Vision Ensuring Quality in Pharmaceuticals Production,* 2012. Disponível em: http://www.tipteh.rs/pdf/Cognex/Expert%20Guide%20-%20Vision%20Ensuring%20Quality%20in%20Pharmaceuticals%20Prorduction_EN%20(2).pdf>. Accesso em: 27 jun 2016.

COVRE, Joyce L.; NASCIMENTO, Vitorugo S.; CRISTOVAM, Priscila C.; SANTOS, Vagner Rogério dos. *Definição de Padrão de Referência para Peso de Volume de Gota de Colírio Lubrificante: Estudo de Qualidade e Confiabilidade*. In: REUNIÃO ANUAL DA SBPC, 67, 2015, São Carlos

DEWS - DRY EYE WORKSHOP Committee. 2007. *Report of the Dry Eye Workshop* (DEWS). Ocul Surf. 2007;5(2):65-204

EDMUND OPTICS. *Optocal Lenses*. Disponível em: http://www.edmundoptics.com/optics/optical-lenses/. Acesso em: 29 jun. 2016.

EDMUND OPTICS. *Imaging Lenses*. Disponível em: http://www.edmundoptics.com/imaging-lenses/. Acesso em: 29 jun. 2016.

EDMUND OPTICS. *Choose the Correct Illumination*. Disponível em: < http://www.edmundoptics.com/resources/application-notes/illumination/choose-the-correct-illumination/>. Acesso em: 29 jun. 2016.

EDMUND OPTICS. *Optics and optical instruments catalog*: catálogo. New Jersey, 2006.

ESTACIA, P.; REGINATTO, R. S.; NUNES, TÁBADA T.; BETINELI, T. M. M.; PASQUALOTTI, A. **Avaliação do custo de colírio lubrificantes a base exclusivamente de carboximetilcelulose no mercado brasileiro**. Rev Bras Oftalmol, 2013, 73, p. 331-334.

FACON, Jacques. **Processamento e análise de imagens**. São Paulo, 2002, 116 f. Dissertação (Mestrado em Informática Aplicada) – Departamento de Ciências da Computação, Pontifícia Universidade Católica do Paraná – PUC-PR.

FELIPE, J. C. **Consultas por similaridade em imagens médicas**: da viabilidade clínica à prática do auxílio ao diagnóstico médico - aplicações em um Hospital Escola. Disponível em: http://dcm.ffclrp.usp.br/?pagina=dcm-compprojfin2010-pt. Acesso em: 24 fev. 2016.

FOTOFILE. CCD vs CMOS. Disponível em:

<http://www.fotofile.net/learning/ccd_vs_cmos/ccd_vs_cmos.htm>. Acesso em: 10 mai. 2016

FRICK, Marcio A. D. **Caracterização de minério de ferro por visão computacional**. Universidade Federal de Santa Maria. Mestrado em engenharia de produção, Santa Maria, 2008, 67p.

GAYNES, B. I.; SINGA, R. M.; SCHAAB, G.; SOROKIN, Y. *Impact of Administration Angle on the Cost of Artificial Tear Solutions: Does Bottle Positioning Minimize Wastage?*. Journal of Ocular Pharmacology and therapeutics, Chicago, vol. 23, 2007, 2. p.196-201.

GERMAN, Emma J.; HURST, Mark A.; WOOD Diana. *Reliability of drop size from multi-dose eye drop bottles: is it cause for concern?*. Royal College of Ophtalmologists, 1999, 13, p. 93-100.

GERRESHEIMER. *High-quality pharmaceutical plastic packaging and systems: for ophthalmic, nasal and parenteral applications*. Disponível em: < http://www.gerresheimer.com/uploads/media/GER_GPP_Catalogue_Ophthalmic_05. pdf>. Acesso em: 24 jun. 2016.

GONÇALVES, M. R.; GUEDES, M.de M. R; CHAVES, M. A. P. Dias; PEREIRA, C. C.de L. P; OTTON, R. Análise dos fatores de risco e epidemiologia em campanha de prevenção da cegueira pelo glaucoma em João Pessoa, Paraíba. Disponível em: http://www.scielo.br/scielo.php?pid=S0034-72802013000600008&script=sci_arttext. Acesso em: 28 ago 2016.

GONZALEZ, R. C.; WOODS, R. E.; EDDINS, S. L. *Digital image processing using Matlab*. Upper Saddle River: Pearson Prentice Hall, 2004, 609p.

GONZALEZ, R. C.; WOODS, R. E. **Processamento de imagens digitais**. São Paulo: Edgard Blücher, 2000, 501p.

GUEDES, R. A. P.; PALETTA, V. M.; CHAOUBAH, A. **Custo-efetividade dos** análogos de prostaglindinas no Brasil. Rev Bras Oftalmol, 2008, 67, 281-287.

HARKINS, W. D., BROWN, F. E. *Determination of surface tension and the weight of falling drops*. J Am Chem Soc, 1919, 499–524.

HARADA, Júlio. **Moldes para injeção de termoplásticos**: projetos e princípios básicos. São Paulo: Artliber Editora, 2008. 308p.

HAYSTEAD, John. *Machine vision adds quality control to pharmaceutical products.* Disponível em: http://www.vision-systems.com/articles/print/volume-2/issue-5/feature-article/machine-vision-adds-quality-control-to-pharmaceutical-products.html. Acesso em: 27 jun. 2016.

HESSMAN, T. *The Dawn of the Smart Factory*. Disponível em: http://www.industryweek.com/technology/dawn-smart-factory. Acesso em 10 mar. 2016.

HORNBERG A. *Handbook of machine vision*. Heppenheim: Wiley-VCH, 2006, 776p.

IBGE. **Projeção da população do Brasil e das unidades da federação**. Disponível em: http://www.ibge.gov.br/apps/populacao/projecao/. Acesso em: 09 set. 2015.

ICVGR, International Conference for Vision Guided Robotics, 2011, Plymouth, I.

KEYENCE. *Guide to correct machine vision usage:* optimize machine vision performance. Disponível em: <www.keyence.com/topics/vision/cv/guide1.php>. Acesso em: 29 jun. 2016.

KICH, V.; KUGE, S.; GEISSBAUER R.; SCHRAUF S. **Industry 4.0: Opportunities and challenges of the industrial internet**. Diisponível em: http://www.strategyand.pwc.com/reports/industry-4-0. Acesso em: 08 mar. 2016.

KINGMAN, S. *Bulletin of the World Health Organization*: *Glaucoma is second leading cause of blindness lobally*, London, num. 82, Nov. 2004. p. 887-888.

KUMAR, S.; KARKI, R.; MEENA, M.; RAKASH, T.; RAJESWAR, T.; GOLI, D. *Reduction in drop size of ophthalmic topical drop preparations and the impact of treatment*. Journal of Advanced Pharmaceutical Technology & Research, 2011:3, 192-194.

LATIMER, Wallace. 3D Machine Vision Using Laser Triangulation. Disponível em: http://www.techbriefs.com/component/content/article/22464>. Acesso em: 29 jun. 2016.

LEDERER C. M. JR; HAROLD R. E. **Drop size of commercial glaucoma medications.** Disponivel em: http://www.ncbi.nlm.nih.gov/pubmed/3717253>. Acesso em: 22 dez. 2015. LOBO, F. A. *The Industry 4.0 revolution and the future of manufacturing execution systems (MES)*. Journal of Innovation Management - The International Journal on Multidisciplinary Approaches on Innovation, Volume 3. 2015

MARQUES FILHO; VIEIRA NETO. **Processamento digital de imagens**. Rio de Janeiro: Brasport, 1999, 11p.

MEYER, J. A. N. **Sistema de visão**. 2003. 83F. Monografia (Especialização em Ciências da Computação) – Universidade São Judas Tadeu – USJT-SP, São Paulo. 2003. Disponível em: <www2.dem.inpe.br/mcr/Orient/pdf/Meyer.pdf> Acesso em: 11 jan. 2010.

MIRMEHDI, M. Prefácio. In: DAVIES, E. R. *Computer and Machine Vision: Theory, Algorithms, Practicalities.* 40. Edição, 2012, Elsevier Inc, London UK

NASCIMENTO, Vitorugo S.; CRISTOVAM, Priscila C.; COVRE, Joyce L.; SANTOS, Vagner Rogério dos. **Estudo da variação do volume de gota de cinco colírios Iubrificantes disponíveis no mercado brasileiro**. In: REUNIÃO ANUAL DA SBPC, 67, 2015, São Carlos

OLIVEIRA, M. D. de. Serialização e Rastreabilidade: cenário atual e principais desafios. Disponível em: http://boaspraticasnet.com.br/?p=6568. Acesso em: 27 jun. 2016.

PAVIM A. X.; COAN JUNIOR J.; SILVA M. G. **Aplicações no controle de qualidade e rastreabilidade**. In: SEMINÁRIO EM SISTEMAS DE VISÃO, 1., 2002, Não publicado.

PAVLIDIS, T. *Computer Vision*. Disponível em: http://www.theopavlidis.com/CvsH/Vision.htm. Acesso em: 24 fev. 2016.

PHILLIPS, J. **The Human Side of Machine Vision**: Vision standards are advancing the design of new machine vision technologies while still addressing the human need for simple to use systems. Disponível em: http://www.qualitymag.com/articles/93023-the-human-side-of-machine-vision. Acesso em: 24 fev. 2016.

PILLING, S. **FÍSICA – QUÍMICA EXPERIMENTAL I**: TENSÃO SUPERFICIAL DE LÍQUIDOS. Disponível em: <www1.univap.br/spilling/FQE1/FQE1_EXP5_Tensao SuperficialGota.pdf>. Acesso em: 14 out. 2015.

POSADA, J.; TORO, C.; BARANDIARAN, I.; OYARZUM, D.; STRICKER, D.; AMICIS, R.; PINTO, E.; EISERT, P.; DOLLNER, J.; VALLARINO, I. K. *Visual* *computing as key enabling technology for industry 4.0 and industrial internet*. Disponível em <http://iphome.hhi.de/eisert/papers/cga2015.pdf>. Acesso em: 10 mar. 2016.

RESNIKOFF, S.; PASCOLINI, D.; ETYA'ALE, D.; KOCUR, I.; PARARAJASEGARAM, R. *Bulletin of the World Health Organization*: Global data on visual impairment in the year 2002. London, 82, Nov. 2004. p. 844-851.

ROIZENBLATT, R.; FREITAS, D. de; JUNIOR, R. B.; HOFLING-LIMA; A. L.; JÚNIOR, J. A. P. **Impacto econômico no tratamento do glaucoma**: volume de gotas de colírio antiglaucomatosos brasileiros e norte-americanos. Arq Bras Oftalmol, São Paulo, 2001, p. 143-146.

ROSATO, Dominick V.; ROSATO, Donald v.; ROSATO, Marlene G. *Injection Molding Handbook*. Nova lorque: Springer, 2000. p. 1413

SALOMÃO, S. R., MITSUHIRO, M. R. K. H., JUNIOR, R. B. *Visual impairment and* **blindness**: an overview of prevalence and causes in Brazil. Abr. 2009, London

SANTVLIET, Luc Van, LUDWIG, Annick. *Determinants of eye drop size*. Survey of ophthalmology, Belgica, vol. 49, 2004, p. 197-213.

SANTVLIET, Luc Van, LUDWIG, Annick. *Influence of the physico-chemical properties of ophthalmic viscolysers on the weight of drops dispensed from a flexible dropper bottle*. European Journal of Pharmaceutical Sciences. 1999, p. 339-345.

SASSO, M.; NATALINI, M.; AMODIO, D. *Digital Image Processing for Quality Control on Injection Molding Products, Applications and Experiences of Quality Control*. Croacia: InTech, 2011. 704 páginas.

SCHLAEPFER, R. C.; KOCH, M.; MERKOFER, P. Industry 4.0 challenges and solutions for the digital transformation and use of exponential technologies. 2015. Disponpivel em:

http://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en-manufacturing-industry-4-0-24102014.pdf>. Acesso em: 16 ago. 2016.

SEGRE, L. *Human eye anatomy: parts of the eye.* Disponível em: http://www.allaboutvision.com/resources/anatomy.htm. Acesso em: 28 fev. 2016.

SILVA, L. M. dos S; VASCONCELLOS, J. P. C. de; TEMPORINI, Edméa R.; COSTA, V. P.; KARA-JOSÉ, N. Tratamento clínico do glaucoma em hospitais universitário: custo mensal e impacto na renda familiar. Arq Bras Oftalmol. 2002, 65, p. 299-303.

SILVA, L. R.; PAULA, J. S. de; ROCHA, E. M.; RODRIGUES, M. de L. V. Fatores relacionados à fidelidade ao tratamento do glaucoma: opiniões de pacientes de um hospital universitário. Arq Bras Oftalmol. 2010, 73. Disponível em: ">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27492010000200003.>. Acesso em: 09 set. 2015.

SIPPEL, Mark. *Introduction to machine vision:* F150-3 vision training. [S.I.: s.n.], [2006?], 41p.

SKLUBALOVÁ, Z; ZATLOUKAL, Z. **Systematic study of factors affectiong eye drop size and dosing variability**. Pharmazie 60, 2005, p. 917-921

SKLUBALOVÁ, Z; ZATLOUKAL, Z. *Classification of plastic eye dropper tips using Harkins and Brown's factor*. Pharmazie 62, 2007, p. 750-755

SOUSA, António de. *Smart Cameras as Embedded Systems*. In: *Internal Conference on Computer Architecture* (ICCA'03), 4., 2003, Braga. Disponível em: http://gec.di.uminho.pt/discip/minf/ac0203/icca03/41640_smartcams.pdf>. Acesso em: 28 jun. 2016.

STEGER, C.; ULRICH, M.; WIEDEMANN, C. *Machine vision algorithms and applications*. Heppenheim: Wiley-VCH, 2008, 360p.

TARIN, Markus. **3-D imaging enters the machine vision world**: consider these 3-D imaging techniques for machine vision. Disponível em: http://www.qualitymag.com/articles/91010--d-imaging-enters-the-machine-vision-world. Acesso em: 29 jun. 2016.

TATE, T. On the magnitude of a drop of liquid formed under different circumstances. Phil Mag, 1864, 176–180.

TREIMAN A. *Life at the Limits*. Disponível em: <http://www.lpi.usra.edu/education/ fieldtrips/2005/activities/ir_spectrum/>. Acesso em: 01 mai. 2010.

VERNON, D. *Machine vision:* automated visual inspection and robot vision. London: Prentice Hall, 1991, 260p.

WATKINS C. D.; SADUN A.; MARENKA S. *Modern Image Processing: warping, morphing, and classical techniques.* Elsevier Science & Technology, 1993, 234p.

WENDEL, Anne. *VDMA:* Machine vision stronger than ever - growth of at least ten percent in 2014. Stuttgart: Verband Deutscher maschinenund Anlagenbau, 2014.

WHELAN, P. F.; MOLLOY, D. *Machine vision algorithms in Java:* techniques and *implementation*. Springer. 2001

WP. *CCD and CMOS sensor info*. Disponível em: <http://www.fennet.de/walter.preiss/e/slomoinf.html>. Acesso em: 04 mar. 2016.

YOSHIKAWA, K; YAMADA, H. *Influence of container structures and content solutions on dispensing time of ophthalmic solutions*. Clinical Ophthalmology, 2010:4, 481-486.

ZEUCH, N. *Understanding and applying machine vision*. 2º ed. New York: Marcel Dekker, 2000, 405p.

ZHANG, B. *Computer vision vs. human vision*. Beijing: IEEE, 3paginas Published in: Cognitive Informatics (ICCI), 2010 9th IEEE International Conference on Disponível em:

<http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5599750&url=http%3A%2F% 2Fieeexplore.ieee.org%2Fiel5%2F5560187%2F5599672%2F05599750.pdf%3Farnu mber%3D5599750>. Acesso em: 24 fev. 2016.

APÊNDICE A

Tabela com cálculo das massas de gotas para validação do dispositivo de gotejamento automático

Validação do dispositivo

Med	Medição 30 gotas separadas													
Num. Gota	Papel	Gota+ Papel	Massa da Gota											
1	0,044	0,067	0,0230 g											
2	0,039	0,073	0,0340 g											
3	0,047	0,082	0,0350 g											
4	0,046	0,078	0,0320 g											
5	0,045	0,077	0,0320 g											
6	0,046	0,075	0,0290 g											
7	0,045	0,073	0,0280 g											
8	0,047	0,079	0,0320 g											
9	0,043	0,076	0,0330 g											
10	0,037	0,070	0,0330 g											
11	0,041	0,063	0,0220 g											
12	0,051	0,072	0,0210 g											
13	0,048	0,069	0,0210 g											
14	0,042	0,064	0,0220 g											
15	0,040	0,084	0,0440 g											
16	0,041	0,062	0,0210 g											
17	0,041	0,064	0,0230 g											
18	0,042	0,065	0,0230 g											
19	0,041	0,065	0,0240 g											
20	0,044	0,067	0,0230 g											
21	0,049	0,072	0,0230 g											
22	0,043	0,065	0,0220 g											
23	0,040	0,067	0,0270 g											
24	0,042	0,065	0,0230 g											
25	0,042	0,065	0,0230 g											
26	0,042	0,067	0,0250 g											
27	0,044	0,067	0,0230 g											
28	0,043	0,066	0,0230 g											
29	0,047	0,068	0,0210 g											
30	0,044	0,068	0,0240 g											

Medi	Medição 30 gotas contínuas														
Num. Gota	Papel	Gota+ Papel	Massa da Gota												
30	0,339	1,148	0,8090 g												

Cálculo razão entre as medidas:

Razão/Erro do dispositivo	2,53%
Medição 30 gotas separadas	0,7890 g
Medição 30 gotas contínuas	0,8090 g

APÊNDICE B

Registro das imagens das inspeções com sistema de visão das aberturas externas e internas dos bicos conta-gotas

Amostras de medições das aberturas externas

Amostras de medições das aberturas internas

APÊNDICE C

Registro da pesagem das gotas dos bicos inspecionados

Medição das massas de 10 gotas de cada um dos 49 bico conta-gotas inspecionados

Bicos	Num Bico	Num. Gota	Massa da Gota	Bicos	Num Bico	Num. Gota	Massa da Gota	Bicos	Num Bico	Num. Gota	Massa da Gota
BP1	Bico 34	1	54,00 mg	B1	Bico 1	1	25,00 mg	BG1	Bico 16	1	29,00 mg
BP1	Bico 34	2	48,00 mg	B1	Bico 1	2	28,00 mg	BG1	Bico 16	2	26,00 mg
BP1	Bico 34	3	42,00 mg	B1	Bico 1	3	21,00 mg	BG1	Bico 16	3	39,00 mg
BP1	Bico 34	4	38,00 mg	B1	Bico 1	4	25,00 mg	BG1	Bico 16	4	36,00 mg
BP1	Bico 34	5	50,00 mg	B1	Bico 1	5	30,00 mg	BG1	Bico 16	5	26,00 mg
BP1	Bico 34	6	27,00 mg	B1	Bico 1	6	31,00 mg	BG1	Bico 16	6	29,00 mg
BP1	Bico 34	7	56,00 mg	B1	Bico 1	7	25,00 mg	BG1	Bico 16	7	27,00 mg
BP1	Bico 34	8	44,00 mg	B1	Bico 1	8	23,00 mg	BG1	Bico 16	8	24,00 mg
BP1	Bico 34	9	49,00 mg	B1	Bico 1	9	28,00 mg	BG1	Bico 16	9	27,00 mg
BP1	Bico 34	10	40,00 mg	B1	Bico 1	10	25,00 mg	BG1	Bico 16	10	30,00 mg
BP2	Bico 42	1	36,00 mg	B2	Bico 8	1	37,00 mg	BG2	Bico 26	1	49,00 mg
BP2	Bico 42	2	31,00 mg	B2	Bico 8	2	34,00 mg	BG2	Bico 26	2	39,00 mg
BP2	Bico 42	3	29,00 mg	B2	Bico 8	3	27,00 mg	BG2	Bico 26	3	23,00 mg
BP2	Bico 42	4	31,00 mg	B2	Bico 8	4	28,00 mg	BG2	Bico 26	4	38,00 mg
BP2	Bico 42	5	27,00 mg	B2	Bico 8	5	31,00 mg	BG2	Bico 26	5	27,00 mg
BP2	Bico 42	6	31,00 mg	B2	Bico 8	6	29,00 mg	BG2	Bico 26	6	25,00 mg
BP2	Bico 42	7	29,00 mg	B2	Bico 8	7	41,00 mg	BG2	Bico 26	7	26,00 mg
BP2	Bico 42	8	32,00 mg	B2	Bico 8	8	32,00 mg	BG2	Bico 26	8	26,00 mg
BP2	Bico 42	9	29,00 mg	B2	Bico 8	9	26,00 mg	BG2	Bico 26	9	24,00 mg
BP2	Bico 42	10	32,00 mg	B2	Bico 8	10	29,00 mg	BG2	Bico 26	10	28,00 mg
BP3	Bico 43	1	31,00 mg	B3	Bico 9	1	33,00 mg	BG3	Bico 27	1	23,00 mg
BP3	Bico 43	2	31,00 mg	B3	Bico 9	2	36,00 mg	BG3	Bico 27	2	29,00 mg
BP3	Bico 43	3	31,00 mg	B3	Bico 9	3	37,00 mg	BG3	Bico 27	3	44,00 mg
BP3	Bico 43	4	28,00 mg	B3	Bico 9	4	40,00 mg	BG3	Bico 27	4	43,00 mg
BP3	Bico 43	5	30,00 mg	B3	Bico 9	5	40,00 mg	BG3	Bico 27	5	29,00 mg
BP3	Bico 43	6	25,00 mg	B3	Bico 9	6	39,00 mg	BG3	Bico 27	6	44,00 mg
BP3	Bico 43	7	21,00 mg	B3	Bico 9	7	43,00 mg	BG3	Bico 27	7	29,00 mg
BP3	Bico 43	8	25,00 mg	B3	Bico 9	8	38,00 mg	BG3	Bico 27	8	29,00 mg
BP3	Bico 43	9	26,00 mg	B3	Bico 9	9	40,00 mg	BG3	Bico 27	9	45,00 mg
BP3	Bico 43	10	27,00 mg	B3	Bico 9	10	39,00 mg	BG3	Bico 27	10	34,00 mg
BP4	Bico 44	1	33,00 mg	B4	Bico 10	1	39,00 mg	BG4	Bico 28	1	30,00 mg
BP4	Bico 44	2	47,00 mg	B4	Bico 10	2	37,00 mg	BG4	Bico 28	2	36,00 mg
BP4	Bico 44	3	46,00 mg	B4	Bico 10	3	51,00 mg	BG4	Bico 28	3	30,00 mg
BP4	Bico 44	4	38,00 mg	B4	Bico 10	4	47,00 mg	BG4	Bico 28	4	33,00 mg
BP4	Bico 44	5	39,00 mg	B4	Bico 10	5	48,00 mg	BG4	Bico 28	5	36,00 mg
BP4	Bico 44	6	45,00 mg	B4	Bico 10	6	42,00 mg	BG4	Bico 28	6	36,00 mg
BP4	Bico 44	7	42,00 mg	B4	Bico 10	7	53,00 mg	BG4	Bico 28	7	38,00 mg
BP4	Bico 44	8	44,00 mg	B4	Bico 10	8	42,00 mg	BG4	Bico 28	8	30,00 mg
BP4	Bico 44	9	37,00 mg	B4	Bico 10	9	33,00 mg	BG4	Bico 28	9	25,00 mg
BP4	Bico 44	10	43,00 mg	B4	Bico 10	10	32,00 mg	BG4	Bico 28	10	36,00 mg
BP5	Bico 45	1	20,00 mg	B5	Bico 11	1	29,00 mg	BG5	Bico 29	1	34,00 mg
BP5	Bico 45	2	26,00 mg	B5	Bico 11	2	37,00 mg	BG5	Bico 29	2	22,00 mg
BP5	Bico 45	3	33,00 mg	B5	Bico 11	3	39,00 mg	BG5	Bico 29	3	24,00 mg
BP5	Bico 45	4	29,00 mg	B5	Bico 11	4	40,00 mg	BG5	Bico 29	4	23,00 mg
BP5	Bico 45	5	31,00 mg	B5	Bico 11	5	42,00 mg	BG5	Bico 29	5	24,00 mg
BP5	Bico 45	6	33,00 mg	B5	Bico 11	6	46,00 mg	BG5	Bico 29	6	18,00 mg
BP5	Bico 45	7	30,00 mg	B5	Bico 11	7	39,00 mg	BG5	Bico 29	7	25,00 mg
BP5	Bico 45	8	32,00 mg	B5	Bico 11	8	37,00 mg	BG5	Bico 29	8	27,00 mg
BP5	Bico 45	9	31,00 mg	B5	Bico 11	9	35,00 mg	BG5	Bico 29	9	23,00 mg
BP5	Bico 45	10	30,00 mg	B5	Bico 11	10	40,00 mg	BG5	Bico 29	10	24,00 mg
BP6	Bico 46	1	28,00 mg	B6	Bico 12	1	42,00 mg	BG6	Bico 30	1	39,00 mg
BP6	Bico 46	2	27,00 mg	B6	Bico 12	2	30,00 mg	BG6	Bico 30	2	46,00 mg
BP6	Bico 46	3	32,00 mg	B6	Bico 12	3	38,00 mg	BG6	Bico 30	3	37,00 mg
BP6	Bico 46	4	29,00 mg	B6	Bico 12	4	42,00 mg	BG6	Bico 30	4	33,00 mg
BP6	Bico 46	5	30,00 mg	B6	Bico 12	5	39,00 mg	BG6	Bico 30	5	31,00 mg

Bicos	Num Bico	Num. Gota	Massa da Gota	Bicos	Num Bico	Num. Gota	Massa da Gota	Bicos	Num Bico	Num. Gota	Massa da Gota
BP6	Bico 46	6	31,00 mg	B6	Bico 12	6	40,00 mg	BG6	Bico 30	6	51,00 mg
BP6	Bico 46	7	35,00 mg	B6	Bico 12	7	39,00 mg	BG6	Bico 30	7	32,00 mg
BP6	Bico 46	8	36,00 mg	B6	Bico 12	8	43,00 mg	BG6	Bico 30	8	39,00 mg
BP6	Bico 46	9	36,00 mg	B6	Bico 12	9	35,00 mg	BG6	Bico 30	9	42,00 mg
BP6	Bico 46	10	35,00 mg	B6	Bico 12	10	44,00 mg	BG6	Bico 30	10	41,00 mg
BP7	Bico 47	1	32,00 mg	B7	Bico 13	1	40,00 mg	BG7	Bico 31	1	27,00 mg
BP7	Bico 47	2	27,00 mg	B7	Bico 13	2	27,00 mg	BG7	Bico 31	2	48,00 mg
BP7	Bico 47	3	21,00 mg	B7	Bico 13	3	29,00 mg	BG7	Bico 31	3	26,00 mg
BP7	Bico 47	4	34,00 mg	B7	Bico 13	4	24,00 mg	BG7	Bico 31	4	43,00 mg
BP7	Bico 47	5	32,00 mg	B7	Bico 13	5	39,00 mg	BG7	Bico 31	5	45,00 mg
BP7	Bico 47	6	33,00 mg	B7	Bico 13	6	30,00 mg	BG7	Bico 31	6	38,00 mg
BP7	Bico 47	7	33,00 mg	B7	Bico 13	7	34,00 mg	BG7	Bico 31	7	51,00 mg
BP7	Bico 47	8	33,00 mg	B7	Bico 13	8	23,00 mg	BG7	Bico 31	8	47,00 mg
BP7	Bico 47	9	31,00 mg	B7	Bico 13	9	40,00 mg	BG7	Bico 31	9	34,00 mg
BP7	Bico 47	10	33,00 mg	B7	Bico 13	10	14,00 mg	BG7	Bico 31	10	37,00 mg
BP8	Bico 48	1	46,00 mg	B8	Bico 14	1	46,00 mg	BG8	Bico 32	1	27,00 mg
BP8	Bico 48	2	37,00 mg	B8	Bico 14	2	37,00 mg	BG8	Bico 32	2	29,00 mg
BP8	Bico 48	3	48,00 mg	B8	Bico 14	3	32,00 mg	BG8	Bico 32	3	30,00 mg
BP8	Bico 48	4	35,00 mg	B8	Bico 14	4	33,00 mg	BG8	Bico 32	4	36,00 mg
BP8	Bico 48	5	47,00 mg	B8	Bico 14	5	38,00 mg	BG8	Bico 32	5	28,00 mg
BP8	Bico 48	6	42,00 mg	B8	Bico 14	6	51,00 mg	BG8	Bico 32	6	27,00 mg
BP8	Bico 48	7	45,00 mg	B8	Bico 14	7	33,00 mg	BG8	Bico 32	7	30,00 mg
BP8	Bico 48	8	42,00 mg	B8	Bico 14	8	34,00 mg	BG8	Bico 32	8	32,00 mg
BP8	Bico 48	9	35,00 mg	B8	Bico 14	9	30,00 mg	BG8	Bico 32	9	33,00 mg
BP8	Bico 48	10	41,00 mg	B8	Bico 14	10	39,00 mg	BG8	Bico 32	10	47,00 mg
BP9	Bico 49	1	25,00 mg	B9	Bico 15	1	30,00 mg	BG9	Bico 33	1	45,00 mg
BP9	Bico 49	2	23,00 mg	B9	Bico 15	2	25,00 mg	BG9	Bico 33	2	36,00 mg
BP9	Bico 49	3	31,00 mg	B9	Bico 15	3	37,00 mg	BG9	Bico 33	3	40,00 mg
BP9	Bico 49	4	20,00 mg	B9	Bico 15	4	31,00 mg	BG9	Bico 33	4	38,00 mg
BP9	Bico 49	5	33,00 mg	B9	Bico 15	5	46,00 mg	BG9	Bico 33	5	43,00 mg
BP9	Bico 49	6	30,00 mg	B9	Bico 15	6	34,00 mg	BG9	Bico 33	6	42,00 mg
BP9	Bico 49	7	27,00 mg	B9	Bico 15	7	34,00 mg	BG9	Bico 33	7	26,00 mg
BP9	Bico 49	8	20,00 mg	B9	Bico 15	8	30,00 mg	BG9	Bico 33	8	45,00 mg
BP9	Bico 49	9	26,00 mg	B9	Bico 15	9	37,00 mg	BG9	Bico 33	9	33,00 mg
BP9	Bico 49	10	24,00 mg	B9	Bico 15	10	36,00 mg	BG9	Bico 33	10	40,00 mg
BP10	Bico 35	1	42,00 mg	B10	Bico 2	1	37,00 mg	BG10	Bico 17	1	26,00 mg
BP10	Bico 35	2	41,00 mg	B10	Bico 2	2	44,00 mg	BG10	Bico 17	2	28,00 mg
BP10	Bico 35	3	49,00 mg	B10	Bico 2	3	35,00 mg	BG10	Bico 17	3	27,00 mg
BP10	Bico 35	4	45,00 mg	B10	Bico 2	4	42,00 mg	BG10	Bico 17	4	38,00 mg
BP10	Bico 35	5	45,00 mg	B10	Bico 2	5	36,00 mg	BG10	Bico 17	5	29,00 mg
BP10	Bico 35	6	46,00 mg	B10	Bico 2	6	38,00 mg	BG10	Bico 17	6	34,00 mg
BP10	BICO 35	7	44,00 mg	B10	BICO 2	7	43,00 mg	BG10	Bico 17	7	28,00 mg
BP10	BICO 35	8	46,00 mg	B10	BICO 2	8	37,00 mg	BG10	Bico 17	8	32,00 mg
BP10	BICO 35	9	48,00 mg	B10	BICO 2	9	38,00 mg	BG10	Bico 17	9	35,00 mg
BPIU	BICO 35	10	48,00 mg	B10	BICO Z	10	35,00 mg	BGIU	BICO 17	10	36,00 mg
BP11	BICO 36	1	46,00 mg	B11	BICO 3	1	17,00 mg	BG11	BICO 18	1	27,00 mg
BP11	BICO 36	2	39,00 mg	B11	BICO 3	2	16,00 mg	BG11	Bico 18	2	38,00 mg
BPII	BICO 36	3	36,00 mg	B11	BICO 3	3	26,00 mg	BGII	BICO 18	3	23,00 mg
BPII	BICO 36	4	31,00 mg	B11	BICO 3	4	32,00 mg	BGII	BICO 18	4	24,00 mg
DP11	Bico 36	5	34,00 mg	D11	Bico 3	5	25,00 mg	BG11	DICU 18	5	21,00 mg
BPII DD11	Bico 30	6	33,00 mg	B11 D11	BICO 3	6	25,00 mg	BGII	BICO 18	6	33,00 mg
BPII DD11	DICU 30	/	42,00 mg	B11	BICO 3	/	15,00 mg	BG11	BICO 18	/	31,00 mg
BP11	DICU 30	8	37,00 mg	BII	BICO 3	8	26,00 mg	BGII	BICO 18	8	28,00 mg
BP11	BICO 36	9	52,00 mg	B11	BICO 3	9	16,00 mg	BG11	BICO 18	9	17,00 mg
BP11	BICO 36	10	44,00 mg	B11	BICO 3	10	20,00 mg	BG11	BICO 18	10	31,00 mg
BP12	Dice 37	1	23,00 mg	B12	Bico 4	1	28,00 mg	BG12	Bico 19	1	37,00 mg
BPIZ	BIC0 37	2	23,00 mg	BIZ	BICO 4	2	22,00 mg	BG12	BICO 10	2	36,00 mg

Bicos	Num Bico	Num. Gota	Massa da Gota	Bicos	Num Bico	Num. Gota	Massa da Gota	Bicos	Num Bico	Num. Gota	Massa da Gota
BP12	Bico 37	3	22,00 mg	B12	Bico 4	3	27,00 mg	BG12	Bico 19	3	35,00 mg
BP12	Bico 37	4	24,00 mg	B12	Bico 4	4	25,00 mg	BG12	Bico 19	4	33,00 mg
BP12	Bico 37	5	19,00 mg	B12	Bico 4	5	26,00 mg	BG12	Bico 19	5	21,00 mg
BP12	Bico 37	6	22,00 mg	B12	Bico 4	6	21,00 mg	BG12	Bico 19	6	22,00 mg
BP12	Bico 37	7	20,00 mg	B12	Bico 4	7	19,00 mg	BG12	Bico 19	7	21,00 mg
BP12	Bico 37	8	28,00 mg	B12	Bico 4	8	14,00 mg	BG12	Bico 19	8	38,00 mg
BP12	Bico 37	9	23,00 mg	B12	Bico 4	9	16,00 mg	BG12	Bico 19	9	36,00 mg
BP12	Bico 37	10	32,00 mg	B12	Bico 4	10	20,00 mg	BG12	Bico 19	10	39,00 mg
BP13	Bico 38	1	39,00 mg	B13	Bico 5	1	28,00 mg	BG13	Bico 20	1	41,00 mg
BP13	Bico 38	2	40,00 mg	B13	Bico 5	2	39,00 mg	BG13	Bico 20	2	41,00 mg
BP13	Bico 38	3	39,00 mg	B13	Bico 5	3	37,00 mg	BG13	Bico 20	3	17,00 mg
BP13	BICO 38	4	38,00 mg	B13	Bico 5	4	34,00 mg	BG13	Bico 20	4	15,00 mg
BP13	BICO 38	5	40,00 mg	B13	Bico 5	5	34,00 mg	BG13	Bico 20	5	21,00 mg
BP13	BICO 38	6	35,00 mg	B13	Bico 5	6	38,00 mg	BG13	Bico 20	6	33,00 mg
BP13	BICO 38	7	39,00 mg	B13	BICO 5	7	30,00 mg	BG13	Bico 20	7	21,00 mg
BP13	BICO 38	8	40,00 mg	B13	BICO 5	8	39,00 mg	BG13	BICO 20	8	19,00 mg
BP13	BICO 38	9	39,00 mg	B13	BICO 5	9	22,00 mg	BG13	Bico 20	9	17,00 mg
BP13	BICO 38	10	38,00 mg	B13	BICO 5	10	21,00 mg	BG13	Bico 20	10	14,00 mg
BP14	BICO 39	1	41,00 mg	B14	BICO 6	1	18,00 mg	BG14	BICO 21	1	19,00 mg
DP14	Bico 20	2	37,00 mg	D14	Bico 6	2	22,00 mg	PG14	Bico 21	2	26,00 mg
BD14	Bico 39	3	42,00 mg	B14	Bico 6	3	20,00 mg	BG14	Bico 21	3	26,00 mg
BD14	Bico 39	4 5	42,00 mg	B14	Bico 6	4	22.00 mg	BG14 BG14	Bico 21	4 5	20,00 mg
BP14 BP1/	Bico 39	5	20.00 mg	B14	Bico 6	5	22.00 mg	BG14	Bico 21	5	40.00 mg
BP14	Bico 39	7	36.00 mg	B14	Bico 6	7	22,00 mg	BG14	Bico 21	7	37.00 mg
BP14	Bico 39	, 8	30.00 mg	B14	Bico 6	, 8	41 00 mg	BG14	Bico 21	, 8	20.00 mg
BP14	Bico 39	9	38.00 mg	B14	Bico 6	9	23 00 mg	BG14	Bico 21	9	18.00 mg
BP14	Bico 39	10	38.00 mg	B14	Bico 6	10	35.00 mg	BG14	Bico 21	10	23.00 mg
BP15	Bico 40	1	38.00 mg	B15	Bico 7	1	24.00 mg	BG15	Bico 22	1	33.00 mg
BP15	Bico 40	2	26,00 mg	B15	Bico 7	2	22,00 mg	BG15	Bico 22	2	29,00 mg
BP15	Bico 40	3	37,00 mg	B15	Bico 7	3	25,00 mg	BG15	Bico 22	3	39,00 mg
BP15	Bico 40	4	33,00 mg	B15	Bico 7	4	37,00 mg	BG15	Bico 22	4	14,00 mg
BP15	Bico 40	5	34,00 mg	B15	Bico 7	5	26,00 mg	BG15	Bico 22	5	39,00 mg
BP15	Bico 40	6	33,00 mg	B15	Bico 7	6	25,00 mg	BG15	Bico 22	6	22,00 mg
BP15	Bico 40	7	34,00 mg	B15	Bico 7	7	19,00 mg	BG15	Bico 22	7	17,00 mg
BP15	Bico 40	8	32,00 mg	B15	Bico 7	8	25,00 mg	BG15	Bico 22	8	22,00 mg
BP15	Bico 40	9	31,00 mg	B15	Bico 7	9	27,00 mg	BG15	Bico 22	9	29,00 mg
BP15	Bico 40	10	30,00 mg	B15	Bico 7	10	39,00 mg	BG15	Bico 22	10	19,00 mg
BP16	Bico 41	1	40,00 mg					BG16	Bico 23	1	29,00 mg
BP16	Bico 41	2	29,00 mg					BG16	Bico 23	2	39,00 mg
BP16	Bico 41	3	34,00 mg					BG16	Bico 23	3	36,00 mg
BP16	Bico 41	4	35,00 mg					BG16	Bico 23	4	20,00 mg
BP16	Bico 41	5	32,00 mg					BG16	Bico 23	5	26,00 mg
BP16	Bico 41	6	38,00 mg					BG16	Bico 23	6	32,00 mg
BP16	Bico 41	7	36,00 mg					BG16	Bico 23	7	25,00 mg
BP16	Bico 41	8	38,00 mg					BG16	Bico 23	8	40,00 mg
BP16	Bico 41	9	38,00 mg					BG16	Bico 23	9	38,00 mg
BP16	Bico 41	10	37,00 mg					BG16	Bico 23	10	34,00 mg
								BG17	Bico 24	1	56,00 mg
								BG17	Bico 24	2	44,00 mg
								BG17	Bico 24	3	52,00 mg
								BG17	Bico 24	4	51,00 mg
	+							BG17	BICO 24	5	55,00 mg
								BG17	BICO 24	6	58,00 mg
								BG17	BICO 24	7	54,00 mg
								861/	BICO 24	8	47,00 mg
	1				1			BG1/	ысо 24	9	48,00 mg

Bicos	Num Bico	Num. Gota	Massa da Gota	Bicos	Num Bico	Num. Gota	Massa da Gota	Bicos	Num Bico	Num. Gota	Massa da Gota
								BG17	Bico 24	10	55,00 mg
								BG18	Bico 25	1	40,00 mg
								BG18	Bico 25	2	16,00 mg
								BG18	Bico 25	3	23,00 mg
								BG18	Bico 25	4	25,00 mg
								BG18	Bico 25	5	20,00 mg
								BG18	Bico 25	6	40,00 mg
								BG18	Bico 25	7	23,00 mg
								BG18	Bico 25	8	40,00 mg
								BG18	Bico 25	9	35,00 mg
								BG18	Bico 25	10	15,00 mg

ANEXO A

Folha de dados - Solenoide marca Soletec

SOLENÓIDE DE ACIONAMENTO SÉRIE - D Corrente Contínua

Estes Solenóides de uma via, tem um núcleo (armadura), de forma cilíndrica. O movimento do núcleo, ocorre de posição inicial, para a posição final do curso, por meio de forças eletromagnéticas geradas. O retorno deverá ser por forças externas (mola).

A montagem poderá ser feita em qualquer posição. Prever tomada de força, somente na direção axial. Com cargas laterais, o desgaste do guia será acentuado.

Curvas características força magnética - curso

Dados Técnicos:

As forças magnéticas indicadas na tabela, são alcançadas com 90% da tensão nominal, e na temperatura de trabalho, válida para as tensões nominais de 24 Vcc. Para outras tensões nominais, poderão haver desvios das forças magnéticas. Os valores das tensões de acionamento, são valores de refêrencia, válidos somente com as tensões nominais, temperatura de trabalho e com carga de 70% da força magnética do aparelho. Os períodos de ligações relativos (PL) se referem a uma duração máxima em ciclos de 5 minutos, acima destes, será sempre considerado como 100%.

MOD.	CURSO	P	L 1009	POT %	ÊNC P	IA D L 40%	E EN	NTRA F	ADA PL 259	, 0		PL 5%	1	- PESO		
	111111	ACION. ms	RETOR. ms	TRAB. W	ACION. ms	RETOR. ms	TRAB. W	ACION. ms	RETOR. ms	TRAB. W	ACION. ms	RETOR. ms	TRAB. W	NÚCLEO Kg	TOTAL Kg	
030	7	75	35	10	60	30	18	50	25	30	30	20	140	0,06	0,25	
040	20	135	45	18	90	40	38	70	33	57	45	25	234	0,13	0,60	
050	25	220	55	25	140	50	50	95	40	80	50	30	320	0,23	1,16	
075	30	450	61	39	315	80	95	175	58	150	60	43	680	0,60	3,25	

SÉRIE - D

TABELA DE MEDIDAS (mm)

MOD	A	В	C	D	Е	F	G	Н	Ι	J	Κ	L	М	0	Р	Q	R	S	Т	U	V	X	Ζ
030	28	45	35	13	10	20	M4	3	20	28	M4	8	M4	10	25	18	80	75	3	10	3	4,5	15
040	42	60	50	20	25	40	M4	4	40	34	M6	12	M6	10	40	30	110	126	4	12	4	4	10
050	50	75	60	24	16	43	M5	5	43	40	M8	10	M8	15	45	38	125	134	4	12	4	5	7
075	70	102	77	30	25	55	M6	5	55	56	M8	10	M8	17	70	55	171	182	4	16	4	5	14

Dados para encomenda: Tipo: ° °°2 % 8% % Tensão nominal... Vcc Período de ligação relativa (PL)...% Curso...mm, Força... N

° Forquilha 5 Std 6

°° STD. 5 ENCAPSULADO 6

 $^{\circ}_{\circ\circ}$ MODELO

88 TRAÇÃO 7 PRESSÃO 8 PRESSÃO/TRAÇÃO 9

See CONECTOR 0 FIOS LIVRES 1 BASE/BORNE 3 Exemplo de encomenda 562 030 891 110 Vcc 25% Curso 15 mm

ANEXO B

Folha de dados – Temporizador eletromecânico marca Omron

Solid-state Timer

DIN Track Mounted, Standard 17.5-mm Width Timer Range

- A wide AC/DC power supply range (24 to 230 VAC/ 24 to 48 VDC) reduces the number of timer models kept in stock. (24 to 230 VAC/VDC with H3DS-XL□)
- Smart Dial/Selector-locking Mechanism: Prevents the dials and selectors on the Timer's front panel from being inadvertently operated or being operated without authorization. The lock can only be unlocked and locked with an optional pen-type Lock Key.
- Screw-Less Clamp type available. (H3DS-□LC)
- Sticker provided for easy timer identification and management.
- Terminal clamp left open when delivered (screw terminal type).
- Finger protection terminal block to meet VDE0106/P100.
- Enables easy sequence checks through instantaneous outputs for a zero set value at any time range.
- · Incorporates environment-friendly, cadmium-free contacts.
- Conforms to EN61812-1 and IEC60664-1 4 kV/2 for Low Voltage, and EMC Directives.

Broad Line-up of H3DS Series

Standard Timer H3DS-M (eight multi-modes) H3DS-S (four multi-modes) H3DS-A (single mode)

au A
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Twin Timer

H3DS-F

H3DS-G

Two-wired Timer H3DS-X

H3DS-X

Contents

H3DS-G

Solid-state Timer

H3DS-M/-S/-A	2
H3DS-F	13
H3DS-G	20
H3DS-X	27
Common to ALL Timers	
Installation of Screw-Less Clamp Models	33
Accessories	36
Precautions	37

Solid-state Multi-functional Timer H3DS-M/-S/-A

- Eight operating modes (H3DS-M) and four operating modes (H3DS-S) cover a wide range of applications.
- A wide time setting range of 0.10 s to 120 h.
- · Two LEDs indicate power and relay status respectively.

Model Number Structure

Model Number Legend

- 1. M: Multi-function type
 - S: Standard type A: Single-function type
- 2. L: Smart lock mechanism
- 3. None: Screw terminal type
 - C: Screw-Less Clamp type

Ordering Information

List of Models

Supply voltage	Control output	Input type	Operating mode	Model	
ni i Patrici de Sucharia - Patri	25 at 1	1946. v 1867 - 19465 - 1	(see note)	Screw terminal type	Screw-Less Clamp type
24 to 230 VAC (50/60Hz)/ 24 to 48 VDC	Contact output: SPDT (time-limit output SP- DT)	Voltage input	Eight multi-modes: A, B, B2, C, D, E, G, J	H3DS-ML	H3DS-MLC
		No-input available	Four multi-modes: A, B2, E, J	H3DS-SL	H3DS-SLC
			Single mode: A	H3DS-AL	H3DS-ALC

Note: The operating modes are as follows:

- A: ON-delay B: Flicker OFF start
- B2: Flicker ON start
- C: Signal ON/OFF-delay D: Signal OFF-delay
- E: Interval G: Signal ON/OFF-delay
- J: One shot

ANEXO C

Folha de dados - Sensor de medição laser marca Omron

Versatile ZG2 Laser Sensor offers diverse measurement functions

- » Flexible for many advanced profile measurements
- » Conduct 8 measurements simultaneously using any of the 20 measurement tools available for each measurement

Sensor Head Selection

For details, see the Ratings and Specifications Table. When ordering, specify the cable length (0.5 m, 2 m).

Ordering Information

Sensing Heads

Sensing Method	Measurement Dist Height Wi	ance dth (Typ.)	Resolution Height V	Vidth	Cable Length	Model Number
Diffuse reflection	210±48 mm	70 mm	6 µm	111µm	0.5 m	ZG2-WDS70 0.5M
	210±48 mm	70 mm	6 µm	111µm	2 m	ZG2-WDS70 2M
Diffuse reflection	100±12 mm	22 mm	2.5 µm	35 µm	0.5 m	ZG2-WDS22 0.5M
	100±12 mm	22 mm	2.5 µm	35 µm	2 m	ZG2-WDS22 2M
Diffuse reflection	50±3 mm	8 mm	l µm	13 µm	0.5 m	ZG2-WDS8T 0.5M
	50±3 mm	8 mm	l µm	13 µm	2 m	ZG2-WDS8T 2M
Regular reflection	22.3±0.5 mm	3 mm	0.25 µm	5 µm	0.5 m	ZG2-WDS3VT 0.5M
	22.3±0.5 mm	3 mm	0.25 µm	5 µm	2 m	ZG2-WDS3VT 2M

Sensor Controllers

Power Supply	Communication Ports	Output Type	Smart Monitor Software for PC	Model Number
24 VDC	One each, USB 2.0 Mini B and RS-232C	NPN, 50 mA at 30 VDC	Included	ZG2-WDC11A
			No	ZG2-WDC11
		PNP, 50 mA at 30 VDC	Included	ZG2-WDC41A
			No	ZG2-WDC41

OMRON ELECTRONICS LLC • THE AMERICAS HEADQUARTERS • Schaumburg, IL USA • 847.843.7900 • 800.556.6766 • www.omron247.com

OMRON CANADA, INC. • HEAD OFFICE Toronto, ON, Canada • 416.286.6465 • 866.986.6766 www.omron247.com

OMRON ELETRÔNICA DO BRASIL LTDA • HEAD OFFICE São Paulo, SP, Brasil • 55.11.2101.6300 • www.omron.com.br

OMRON ELECTRONICS MEXICO SA DE CV • HEAD OFFICE Apodaca, N.L. • 52.811.156.99.10 • 001.800.556.6766 • mela@omron.com OMRON ARGENTINA • SALES OFFICE Cono Sur • 54.11.4783.5300

OMRON CHILE • SALES OFFICE Santiago • 56.9.9917.3920

OTHER OMRON LATIN AMERICA SALES 54.11.4783.5300

OMRON EUROPE B.V. Wegalaan 67-69, NL-2132 JD, Hoofddorp, The Netherlands. Tel: +31 (0) 23 568 13 00 Fax: +31 (0) 23 568 13 88 www.industrial.omron.eu

Authorized Distributor:

Automation Systems

• Programmable logic controllers (PLC) • Human machine interfaces (HMI) • Remote I/O

Industrial PC's
 Software

Motion & Drives

• Motion controllers • Servo systems • AC drives

- **Control Components**
- Temperature controllers Power supplies Timers Counters Programmable relays
- Digital panel indicators Electromechanical relays Monitoring products Solid-state relays • Limit switches • Pushbutton switches • Low voltage switch gear

Sensing & Safety

- Photoelectric sensors Inductive sensors Capacitive & pressure sensors
- Cable connectors Displacement & width-measuring sensors Vision systems
- Safety networks Safety sensors Safety units/relay units Safety door/guard lock switches

ANEXO D

Folha de dados – Sistema de visão marca Omron

Vision System FZ5-Series

A range of processing items for positioning and inspection

- The High-precision Object Detection Required for Positioning
- Converting Measurement Results to Output User Units
- Easily Integrate Interfaces into the Machine
- Easy Setup with Program Scalability

System configuration

EtherNet/IP, No-protocol Ethernet and PLC Link Connections

Example of the FZ5 Sensor Controllers (4-camera type)

* To use Straight or cross STP (shielded twisted-pair) cable of category 5 or higher for Ethernet and RJ45 connector.

Ordering Information

FZ5 Series Sensor Controllers

Iter	n	CPU	No. of cameras	Output	Model
			0	NPN	FZ5-1100
		High-speed	2	PNP	FZ5-1105
		Controllers	4	NPN	FZ5-1100-10
	Controllers		4	PNP	FZ5-1105-10
	with LCD	Standard Controllers	0	NPN	FZ5-600
······································			2	PNP	FZ5-605
			4	NPN	FZ5-600-10
				PNP	FZ5-605-10
8			0	NPN	FZ5-L350
1 N-	Box-type	Lite	2	PNP	FZ5-L355
111	controllers	Controllers	4	NPN	FZ5-L350-10
<u>-0</u>			4	PNP	FZ5-L355-10

Company names and product names in this document are the trademarks or registered trademarks of their respective companies. The product photographs and figures that are used in this catalog may vary somewhat from the actual products.

Cameras

	Item	Descriptions	Color / Monochrome	Image Acquisition Time	Model
		5 million pixels	Color	00 F	FZ-SC5M2
02.		up to two cameras can be connected.)	Monochrome	62.5 ms	FZ-S5M2
	Digital CCD Cameras	2 million nivola	Color	22.2 mg	FZ-SC2M
Contraction of the	(Lens required)		Monochrome	33.3 ms	FZ-S2M
		300,000 pixels	Color	12.5 ms	FZ-SC
			Monochrome	12.0 113	FZ-S
	High-speed		Color		FZ-SHC
	(Lens required)	300,000 pixels	Monochrome	4.9 ms	FZ-SH
		300,000 pixel flat type	Color	10 E ma	FZ-SFC
	Small Digital	Soo,ooo-pixel hat type	Monochrome	12.5 1115	FZ-SF
	(Lenses for small camera required)	200,000 pixel per type	Color	12.5 mg	FZ-SPC
		Soo,ooo-pixel pen type	Monochrome	12.5 1115	FZ-SP
ref.		Narrow view	Color		FZ-SQ010F
	Intelligent Compact CMOS Cameras	Standard view	Color	16 7 mg	FZ-SQ050F
	High power Lighting)	Wide View (long-distance)	Color	10.7 1115	FZ-SQ100F
		Wide View (short-distance)	Color		FZ-SQ100N

Camera Cables

Item	Descriptions	Cable length *2	Model
		2m	FZ-VS3 2M
$\langle \bigcirc$	Camera Cabla	3m	FZ-VS3 3M
. 9	Camera Cable	5m	FZ-VS3 5M
		10m	FZ-VS3 10M
		2m	FZ-VSB3 2M
		3m	FZ-VSB3 3M
.9	Bend resistant Camera Cable	5m	FZ-VSB3 5M
		10m	FZ-VSB3 10M
		2m	FZ-VSL3 2M
\bigcirc		3m	FZ-VSL3 3M
• 9	Right-angle Camera Cable ^1	5m	FZ-VSL3 5M
•		10m	FZ-VSL3 10M
		2m	FZ-VSLB3 2M
		3m	FZ-VSLB3 3M
· Y	Bend resistant Right-angle Camera Cable "I	5m	FZ-VSLB3 5M
		10m	FZ-VSLB3 10M
.0	Long-distance Camera Cable	15m	FZ-VS4 15M
Q	Long-distance Right-angle Camera Cable *1	15m	FZ-VSL4 15M
\$	Cable Extension Unit Up to two Extension Units and three Cables can be connected. (Maximum cable length: 45 m *2)	-	FZ-VSJ

*1 *2

This Cable has an L-shaped connector on the Camera end. The maximum cable length depends on the Camera being connected, and the model and length of the Cable being used. For further information, please refer to the "Cameras / Cables Connection Table" and "Maximum Extension Length Using Cable Extension Units FZ-VSJ".

Cameras / Cables Connection Table

			D	igital CCD camera	as	Small digital	High-speed	Intelligent
Type of	Model	Cable length	300,000-pixel	2 million-pixel	5 million-pixel	CCD cameras Pen type / flat type	CCD cameras	compact CMOS cameras
Camera			FZ-S/SC	FZ-S2M/SC2M	FZ-S5M2/ SC5M2	FZ-SF/SFC FZ-SP/SPC	FZ-SH/SHC	FZ-SQ□
		2 m	Yes	Yes	Yes	Yes	Yes	Yes
Camera Cables Right-angle camera cables	FZ-VS3 FZ-VSL3	3 m	Yes	Yes	Yes	Yes	Yes	Yes
		5 m	Yes	Yes	Yes	Yes	Yes	Yes
		10 m	Yes	Yes	No	Yes	Yes	Yes
		2 m	Yes	Yes	Yes	Yes	Yes	Yes
Bend resistant camera cables	FZ-VSB3	3 m	Yes	Yes	Yes	Yes	Yes	Yes
Camera Cable	FZ-VSLB3	5 m	Yes	Yes	Yes	Yes	Yes	Yes
		10 m	Yes	Yes	No	Yes	Yes	Yes
Long-distance camera cable Long-distance right-angle camera cable	FZ-VS4 FZ-VSL4	15 m	Yes	Yes	No	Yes	Yes	Yes

			Max.number of	Us	ing Cable Extension Units FZ-VSJ
Item	Model	Maximum cable length using 1 Camera Cable	connectable Extension Units	Max. cable length	Connection configuration
Digital	FZ-S/SC FZ-S2M/SC2M	15 m (Using FZ-VS4/VSL4)	2	45 m	Camera cable: 15 m X 3 Extension Unit: 2
CCD Cameras	FZ-S5M2/SC5M2	5 m (Using FZ-VS□/VSL□)	2	15 m	Camera cable: 5 m × 3 Extension Unit: 2
Small Digital CCD Cameras Flat type/ Pen type	FZ-SF/SFC FZ-SP/SPC	15 m (Using FZ-VS4/VSL4)	2	45 m	Camera cable: 15 m × 3 Extension Unit: 2
High-speed CCD Cameras	FZ-SH/SHC	15 m (Using FZ-VS4/VSL4)	2	45 m	Camera cable: 15 m X 3 Extension Unit: 2
Intelligent Compact CMOS Cameras	FZ-SQ□	15 m (Using FZ-VS4/VSL4)	2	45 m	Camera cable: 15 m X 3 Extension Unit: 2

Maximum Extension Length Using Cable Extension Units FZ-VSJ

LED Monitor Cable

Item	Descriptions	Cable length	Model
10			FZ-VM 2M
• 7		5 m	FZ-VM 5M

Parallel I/O Cable

Item	Descriptions	Cable length	Model
0	Parallel I/O Cable	2 m	FZ-VP 2M
		5 m	FZ-VP 5M
$\sqrt{2}$	Parallel I/O Cable for Connector-terminal Conversion Unit Connector-Terminal Block Conversion Units can be connected	2 m	FZ-VPX 2M
* *	(Terminal Blocks Recommended Products: OMRON XW2R-J50G-T, XW2R-E50G-T, XW2R-P50G-T)	5 m	FZ-VPX 5M

Recommended EtherNet/IP Communications Cables

Use Straight or cross STP (shielded twisted-pair) cable of category 5 or higher for EtherNet/IP.

Item	Descriptions			Model
-			Hitachi Metals, Ltd.	NETSTAR-C5E SAB 0.5 × 4P *1
-	Wire Gauge and Number of	Cables	Kuramo Electric Co.	KETH-SB *1
-	Pairs: AWG24, 4-pair Cable		SWCC Showa Cable Systems Co.	FAE-5004 *1
_		RJ45 Connectors	Panduit Corporation	MPS588-C *1
_		Cables	Kuramo Electric Co.	KETH-PSB-OMR *2
-	Wire Gauge and Number of	Cables	JMACS Japan Co.,Ltd.	PNET/B *2
	Pairs: AWG22, 2-pair Cable	RJ45 Assembly Connector	OMRON	XS6G-T421-1 *2
_	Wire Gauge and Number of	Cables	Fujikura Ltd.	F-LINK-E 0.5mm × 4P *3
_	Pairs: 0.5 mm, 4-pair Cable	RJ45 Connectors	Panduit Corporation	MPS588 *3

Note: Please be careful while cable processing for EtherNet/IP, connectors on only one end should be shield connected.

We recommend you to use above cable For EtherNet/IP and RJ45 Connector together.
 We recommend you to use above cable For EtherNet/IP and RJ45 Assembly Connector together.
 We recommend you to use above cable For EtherNet/IP and RJ45 Connectors together.

Accessories	3						
Item			Descriptions		Model		
	LCD Monitor 8.4 inche For Box-type Controlle	es ers			FZ-M08		
			2 GB		FZ-MEM2G		
	USB Memory		8 GB		FZ-MEM8G		
	VESA Attachment For installing the LCD	integrated-type controll	er		FZ-VESA		
	Desktop Controller Sta For installing the LCD	nd integrated-type controll	er		FZ-DS		
	Display/USB Switcher				FZ-DU		
_	Mouse Recommended Driverless wired mouse (A mouse that requires	d Products e the mouse driver to be	e installed is not supported.)		-		
AN	Industrial Switching	3 port	Failure detection: None	Current consumption: 0.22 A	W4S1-03B		
10	and Ethernet	5 port	Failure detection: None	re detection: None Current consumption:			
2. C		5 port	Failure detection: Supported	0.22 A	W4S1-05C		
_	External Lighting				FLV Series *		
					FL Series *		
*>		For ELV Sorios	Camera Mount Lighting Controlle	FLV-TCC Series *			
18 B.	Lighting Controller (Required to control external lighting from a Controller)	T OF T LV-Selles	Analog Lighting Controller	FLV-ATC Series *			
7		For FL-Series	Camera Mount Lighting Controlle	FL-TCC Series *			
			Mounting Bracket		FQ-XL		
	For Intelligent Compact Camera		Mounting Brackets		FQ-XL2		
			Polarizing Filter Attachment	FQ-XF1			
	Mounting Bracket for F	Z-S			FZ-S-XLC		
	Mounting Bracket for F	Z-S□2M			FZ-S2M-XLC		
_	Mounting Bracket for F	Z-SH□					
	Mounting Bracket for F	H-S□, FZ-S□5M2		FH-SM-XLC			

* Refer to the Vision Accessory Catalog (Cat. No. Q198) for details.

Lenses

C-mount Lens for 1/3-inch image sensor (Recommend: FZ-S□/FZ-SH□)

Model	3Z4S-LE SV-03514V	3Z4S-LE SV-04514V	3Z4S-LE SV-0614V	3Z4S-LE SV-0813V	3Z4S-LE SV-1214V	3Z4S-LE SV-1614V	3Z4S-LE SV-2514V	3Z4S-LE SV-3518V	3Z4S-LE SV-5018V	3Z4S-LE SV-7527V	3Z4S-LE SV-10035V
Appearance/ Dimensions (mm)	29.5 dia 30.4	29.5 dia 29.5	29 dia. 30.0	28 dia. 34.0	29 dia. 29.5	29 dia 24.0	29 dia. 24.5	29 dia. 33.5[WD:::] to 37.5[WD:300]	32 dia. 37.0[WD:∞] to 39.4[WD:1000]	32 dia. 42.0[WD:∞] to 44.4[WD:1000]	32 dia. 43.9[WD:∞] to 46.3[WD:1000]
Focal length	3.5 mm	4.5 mm	6 mm	8 mm	12 mm	16 mm	25 mm	35 mm	50 mm	75 mm	100 mm
Aperture (F No.)	1.4 to Close	1.4 to Close	1.4 to Close	1.3 to Close	1.4 to Close	1.4 to Close	1.4 to Close	1.8 to Close	1.8 to Close	2.7 to Close	3.5 to Close
Filter size	-	-	M27.0 P0.5	M25.5 P0.5	M27.0 P0.5	M27.0 P0.5	M27.0 P0.5	M27.0 P0.5	M30.5 P0.5	M30.5 P0.5	M30.5 P0.5
Maximum sensor size	1/3 inch	1/3 inch	1/3 inch	1/3 inch	1/3 inch	1/3 inch	1/3 inch	1/3 inch	1/3 inch	1/3 inch	1/3 inch
Mount		C mount									

C-mount Len	-mount Lens for 2/3-inch image sensor (Recommend: FZ-S⊡2M/FZ-S⊡5M2)								
Model	3Z4S-LE SV-0614H	3Z4S-LE SV-0814H	3Z4S-LE SV-1214H	3Z4S-LE SV-1614H	3Z4S-LE SV-2514H	3Z4S-LE SV-3514H	3Z4S-LE SV-5014H	3Z4S-LE SV-7525H	3Z4S-LE SV-10028H
Appearance/ Dimensions (mm)	42 dia. 57.5	39 dia. 52.5	30 dia. 51.0	30 dia. 47.5	30 dia. 36.0	44 dia. 45.5	44 dia. 57.5	36 dia. 49.5[WD:∞] to 54.6[WD:1200]	39 dia. 66.5[WD:∞] to 71.6[WD:2000]
Focal length	6 mm	8 mm	12 mm	16 mm	25 mm	35 mm	50 mm	75 mm	100 mm
Aperture (F No.)	1.4 to 16	1.4 to 16	1.4 to 16	1.4 to 16	1.4 to 16	1.4 to 16	1.4 to 16	2.5 to Close	2.8 to Close
Filter size	M40.5 P0.5	M35.5 P0.5	M27.0 P0.5	M27.0 P0.5	M27.0 P0.5	M35.5 P0.5	M40.5 P0.5	M34.0 P0.5	M37.5 P0.5
Maximum sensor size	2/3 inch	2/3 inch	2/3 inch	2/3 inch	2/3 inch	2/3 inch	2/3 inch	1 inch	1 inch
Mount	C mount								

Lenses for small camera

Model	FZ-LES3	FZ-LES6	FZ-LES16	FZ-LES30
Appearance/ Dimensions (mm)	12 dia.	12 dia.	12 dia.	12 dia. 25.5
Focal length	3 mm	6 mm	16 mm	30 mm
Aperture (F No.)	2.0 to 16	2.0 to 16	3.4 to 16	3.4 to 16

Vibrations and Shocks Resistant C-mount Lens for 2/3-inch image sensor (Recommend: FZ-S□/FZ-S□2M/FZ-S□5M2/FZ-SH□)

Appearance/ Dimensions (mm) Junctions (mm) Junctinstant (mm) Junctions (mm)	Model				3Z VS-MC1	24S-LE 5-000	□□ *1							3Z VS-MC2	24S-LE 0-	1×1					
Focal length 15 mm 20 nm 20 nm Appearance/ Diffeed imagnification 0.03 × 0.2 × 0.3 × 0.04 × 0.25 × 0.4 × Appearance/ Diffeed imagnification 0.03 × 0.2 × 0.3 × 0.04 × 0.25 × 0.4 × 0.25 × 0.4 × 0.4 × 0.25 × 0.4 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.4 × 0.25 × 0.6 × 0.12.8 1.5 × 0.4 × 0.25 × 0.6 × 0.15 × 0.4 × 0.25 × 0.6 × 0.15 × 0.4 × 0.2 × 0.6 × 0.15 × 0.4 × 0.2 × 0.5 × 0.6 × 0.15 × 0.4 × 0.2 × 0.6 × 0.15 × 0.4 × 0.2 × 0.4 × 0.2 × 0.4 × 0.2 × 0.4 × 0.2 × 0.4 × 0.4 × 0.4 × 0.4 ×	Appearance/ Dimensions (mm)				31 dia. 25.	4[0.03×] to :	29.5[0.3×]						31 dia. 23.0[0.04×] to 30.5[0.4×]								
M27.0 P0.5 W27.0 P0.5 W27.0 P0.5 M27.0 P0.5 W27.0 P0.5 W27.0 P0.5 Aperiume (riced F No.)*2 V2 Solution of the (mm) *3 W27.0 P0.5 W27.0 P0.5 Aperiume (riced F No.)*2 VS-MC28/VE OLD ** W27.0 P0.5 Marking meansor size Maximum sensor size W27.0 P0.5 OLD ** C Mount C Mount SA45-LE SA45-LE <th colspa<="" th=""><th>Focal length</th><th></th><th></th><th></th><th>1</th><th>5 mm</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2</th><th>0 mm</th><th></th><th></th><th></th><th></th></th>	<th>Focal length</th> <th></th> <th></th> <th></th> <th>1</th> <th>5 mm</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th>0 mm</th> <th></th> <th></th> <th></th> <th></th>	Focal length				1	5 mm								2	0 mm					
Optical magnification 0.03 × 0.2 × 0.3 × 0.04 × 0.25 × 0.4 × <th0.4 th="" ×<=""> 0.4 × 0.4</th0.4>	Filter size				M27	7.0 P0.	5							M27	7.0 P0.	5					
Aperture (fixed F No.)*2 2 5.6 8 2 5.6	Optical magnification	C).03 ×		(0.2 ×			$0.3 \times$		0	$0.04 \times$		0).25 ×			$0.4 \times$			
Depth of field (mm) *3 183.1 152.7 7.32.4 4.8 13.4 19.2 2.3 6.5 9.2 11.0 8 9.0 12.8 1.5 3.9 5.6 Mount C Mount Model 3245-LE VS-MC25N-000000000000000000000000000000000000	Aperture (fixed F No.) *2	2	5.6	8	2	5.6	8	2	5.6	8	2	5.6	8	2	5.6	8	2	5.6	8		
Maximum sensor size CMount Model 3245-LE C Mount Appearance/ Dimensions (nm) 31 del 25 nm 3245-LE VS-MC301-11 Focal length 25 nm 30 nm Filter size M27.0 P0.5 0.06 × 0.15 × 0.45 × Apperance/ Dimensions (nm) 2 5.6 8 <td< th=""><th>Depth of field (mm) *3</th><th>183.1</th><th>512.7</th><th>732.4</th><th>4.8</th><th>13.4</th><th>19.2</th><th>2.3</th><th>6.5</th><th>9.2</th><th>110.8</th><th>291.2</th><th>416.0</th><th>3.4</th><th>9.0</th><th>12.8</th><th>1.5</th><th>3.9</th><th>5.6</th></td<>	Depth of field (mm) *3	183.1	512.7	732.4	4.8	13.4	19.2	2.3	6.5	9.2	110.8	291.2	416.0	3.4	9.0	12.8	1.5	3.9	5.6		
Model SZ4S-LE C Model Appearance/ Dimensions (mm) 31 ac 245-LE VS-MC2SN-IIII *1 VS-MC2SN-IIII *1 VS-MC2SN-IIII *1 Appearance/ Dimensions (mm) 31 ac 25 mm 31 ac 25 mm 31 ac 25 mm 31 ac 25 mm Focal length 25 mm 0.05 × 0.05 × 0.06 × 0.15 × 0.45 × Appearance/ Dimensions (mm) 2 5.6 8 2 5.6	Maximum sensor size									2/3	Inch										
Model 3245-LE 3245-LE 1 Appearance/ Dimensions (nm) 31 de vest@code = 58 (0,0 de = 5	Mount									υM	ount										
Appearance/ Dimensions (mm) 31 arr 25 m/ 25 arr 20 p0.5 31 arr 20 m/ 20 m/ 30 m/ Set 0000 to 38 (0.54) 31 arr 20 m/ 20 m/ 30 m/ M27.0 P0.5 31 arr 20 m/ 30 m/ M27.0 P0.5 Filter size M27.0 P0.5 0.05 × 0.25 × 0.5 × 0.06 × 0.15 × 0.45 × Apperture (fixed F No.) *2 2 5.6 8 2	Model			,	3Z VS-MC25	4S-LE N-DDD] *1	1						3Z VS-MC3	4S-LE 0000	□□ *1					
Focal length 25 mm 30 mm Filter size M27.0 P0.5 M27.0 P0.5 M27.0 P0.5 0.45 × 0.45 × Aperture (fixed F No.)*2 2 5.6 8	Appearance/ Dimensions (mm)				31 dia. 26	.5[0.05×] to	38.0[0.5×]							31 dia. 24.0) [0.06×] to 3	15.7[0.45×]					
M27.0 P0.5 M27.0 P0.5 Optical magnification 0.05× 0.25× 0.5× 0.06× 0.15× 0.45× Aperture 2 5.6 8 2 5	Focal length				2	5 mm								3	0 mm						
Optical magnification 0.05 × 0.25 × 0.5 × 0.06 × 0.15 × 0.45 × Aperture (fixed F No.)*2 2 5.6 8 2	Filter size				M27	7.0 P0.	5							M27	7.0 P0.	5					
Aperture (rixed F No.)*2 2 5.6 8 2 <	Optical magnification	0	$0.05 \times$		0).25 ×			$0.5 \times$		0	$0.06 \times$		0).15 ×		($0.45 \times$			
Depth of field (mm) '3 67.2 188.2 268.6 3.2 9.0 12.8 1.0 2.7 3.8 47.1 131.9 188.4 8.2 22.9 32.7 1.1 3.2 4.6 Maximum sensor size C Mount Model 324S-LE VS-MC35-□□□ *1 Appearance/ Dimensions (mm) Focal length 324S-LE VS-MC35-□□□ *1 Focal length 35.6 8 1.9 5.6 8 2 5.6 8	Aperture (fixed F No.) *2	2	5.6	8	2	5.6	8	2	5.6	8	2	5.6	8	2	5.6	8	2	5.6	8		
Maximum sensor size 2/3 inch Mount C Mount Side Side <thside< th=""><th>Depth of field (mm) *3</th><th>67.2</th><th colspan="4"><u>67.2</u> 188.2 268.8 3.2 9.0 12.8 1.0 2.7 3.8 47.1 131.9 188.4 8.2 22.9 32.7 1.1</th><th>1.1</th><th>3.2</th><th>4.6</th></thside<>	Depth of field (mm) *3	67.2	<u>67.2</u> 188.2 268.8 3.2 9.0 12.8 1.0 2.7 3.8 47.1 131.9 188.4 8.2 22.9 32.7 1.1				1.1	3.2	4.6												
Mount C Mount Model 324S-LE VS-MC35-00000 *1 VS-MC50-000000 *1 Appearance/ Dimensions (mm) 31 date 2200,280/ to 45.70,285/ *1 VS-MC50-000000 *1 Focal length 35 mm 50 mm 50 mm Filter size M27.0 P0.5 0.08 × 0.22 × 0.48 × Aperture (fixed F No.)*2 1.9 5.6 8 1.9 5.6 8 2	Maximum sensor size									2/3	inch										
Model 324S-LE 324S-LE VS-MC35 1 J <thj< th=""></thj<>	Mount	C Mount																			
Appearance/ Dimensions (mm) 31 de $\sqrt{2}$ (200 to 457(0.654) Focal length 35 mm 50 mm Filter size M27.0 P0.5 M27.0 P0.5 Optical magnification 0.26 × 0.3 × 0.65 × 0.08 × 0.2 × 0.48 × Apperture (fixed F No.) *2 1.9 5.6 8 1.9 5.6 8 2 5.6	Model				3Z VS-MC3	4S-LE 5-000	□□ *1							3Z VS-MC50	24S-LE 0-□□□	1* 🗆					
Focal length 35 mm 50 mm Filter size M27.0 P0.5 M27.0 P0.5 M27.0 P0.5 Optical magnification 0.26 × 0.3 × 0.65 × 0.08 × 0.22 × 0.48 × Aperture (fixed F No.) *2 1.9 5.6 8 1.9 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 5.6 8 2 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 2.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	Appearance/ Dimensions (mm)				31 dia.	0[0.26×] to 4	45.7[0.65×]				31 dia. 44,5[0.08×] to 63.9[0.48×]										
Filter size M27.0 P0.5 M27.0 P0.5 M27.0 P0.5 Optical magnification 0.26 × 0.3 × 0.65 × 0.08 × 0.22 × 0.48 × Aperture (fixed F No.)*2 1.9 5.6 8 1.9 5.6 8 2 5.6 8	Focal length				3	5 mm								5	0 mm						
Optical magnification 0.26 × 0.3 × 0.65 × 0.08 × 0.2 × 0.48 × Aperture (fixed F No.)*2 1.9 5.6 8 1.9 5.6 8 1.9 5.6 8 2.9 4.1 Model 37.4 37.6 10.0 3.7 10.7	Filter size				M27	7.0 P0.	5							M27	7.0 P0.	5					
Aperture (fixed F No.)*2 1.9 5.6 8 1.9 5.6 8 2.9	Optical magnification	0	$0.26 \times$		(0.3×		($0.65 \times$		0	\times 80.		(0.2×		($0.48 \times$			
Depth of field (mm) *3 2.8 8.4 11.9 2.2 6.5 9.2 0.6 1.7 2.5 33.8 75.6 108.0 6.0 13.4 19.2 1.3 2.9 4.1 Maximum sensor size 2/3 inch Mount C Mount Model 2/3 inch Model 2/3 inch State Stression Tubes Focal length 75 mm Filter size M27.0 P0.5 Optical magnification 0.14 × 0.2 × 0.62 × Aperture (fixed F No.) *2 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 3.8 5.6 <td 8"8"8"8"8"8"8"8"8"8"8"8"8"8"8"8"8"8"<="" colspan="2" th=""><th>Aperture (fixed F No.) *2</th><th>1.9</th><th>5.6</th><th>8</th><th>1.9</th><th>5.6</th><th>8</th><th>1.9</th><th>5.6</th><th>8</th><th>2</th><th>5.6</th><th>8</th><th>2</th><th>5.6</th><th>8</th><th>2</th><th>5.6</th><th>8</th></td>	<th>Aperture (fixed F No.) *2</th> <th>1.9</th> <th>5.6</th> <th>8</th> <th>1.9</th> <th>5.6</th> <th>8</th> <th>1.9</th> <th>5.6</th> <th>8</th> <th>2</th> <th>5.6</th> <th>8</th> <th>2</th> <th>5.6</th> <th>8</th> <th>2</th> <th>5.6</th> <th>8</th>		Aperture (fixed F No.) *2	1.9	5.6	8	1.9	5.6	8	1.9	5.6	8	2	5.6	8	2	5.6	8	2	5.6	8
Maximum sensor size 2/3 inch Mount C Mount Model 2/3 inch Model C Mount Model SZ4S-LE VS-MC75-000014x Total in the second of the	Depth of field (mm) *3	2.8	8.4	11.9	2.2	6.5	9.2	0.6	1.7	2.5	33.8	75.6	108.0	6.0	13.4	19.2	1.3	2.9	4.1		
Mount C Mount Model 3Z4S-LE VS-MC75-0001*1 Appearance/ Dimensions (mm) Ji da. Yoo (0.14x) to 105.5[0.62x] Focal length 75 mm Filter size M27.0 PO.5 Optical magnification 0.14 × 0.2 × 0.62 × Aperture (fixed F No.)*2 3.8 5.6 8 7.0 7.0 7.0 7.0	Maximum sensor size									2/3	inch										
Model 3Z4S-LE VS-MC75-000014x[to 105.5[0.62x] Appearance/ Dimensions (mm) Ji dia. You (00.14x] to 105.5[0.62x] Focal length 75 mm Filter size M27.0 P0.5 Optical magnification 0.14 × 0.2 × 0.62 × Aperture (fixed F No.)*2 3.8 5.6 8 7.0 7.0 7.0 7.0 7.0 7.0 7.	Mount		C Mount																		
Appearance/ Dimensions (mm) 31 dis. 70.0(0.14x) to 105.5(0.62x) Extension Tubes Focal length 75 mm 100.0000000000000000000000000000000000	Model	3Z4S-LE VS-MC75-0000 *1																			
Dimensions (mm) 31 dia 700(0.14x) to 105.5[0.62x] Lenses For C mount Lenses * For Small Digital CCD Cameras Focal length 75 mm Model 324S-LE SV-EXR FZ-LESR Optical magnification 0.14 × 0.2 × 0.62 × Model Set of 7 tubes (40 mm, 20 mm, 10 mm, 5 mm, 2.0 mm, 1.0 mm, and 0.5 mm) Set of 3 tubes (15 mm, 10 mm, 5 mm) Depth of field (mm) *3 17.7 26.1 37.2 9.1 13.4 19.2 1.3 1.9 2.7 Mount Computer Q/3 inch Computer Depth of field (mm) *3 17.7 26.1 37.2 9.1 13.4 19.2 7.3 1.9 2.7	Appearance/	Extension Tubes																			
Process length 75 mm Model 324S-LE SV-EXR FZ-LESR Filter size M27.0 P0.5 Model 324S-LE SV-EXR FZ-LESR Optical magnification 0.14 × 0.2 × 0.62 × (40 mm, 20 mm, 10 mm, 5 mm) Set of 3 tubes (15 mm, 10 mm, 5 mm) Aperture (fixed F No.) *2 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 Depth of field (mm) *3 17.7 26.1 37.2 9.1 13.4 19.2 1.3 1.9 2.7 Maximum sensor size 2/3 inch 2/3 inch Mount C Mount L Do not use 0.5 mm 1.0 mm, and 0.5 mm) Maximum outer diameter: 30 mm dia.	Dimensions (mm)	31 dia 70.0[0.14x] to 105.5[0.62x] Lenses For C mount			Lenses *		For S eras	mali Digi	tal CCD	Cam-											
Option of field (mm) *3 17.7 26.1 37.2 9.1 13.4 19.2 1.3 1.9 2.7 Mount C Mount Set of 7 tubes (40 mm, 20 mm, 10 mm, 5 mm, 2.0 mm, 1.0 mm, and 0.5 mm) Set of 3 tubes (15 mm, 10 mm, 5 mm) Mount Contents Set of 7 tubes (40 mm, 20 mm, 10 mm, 5 mm) Set of 3 tubes (15 mm, 10 mm, 5 mm) Naximum outer diameter: 12 mm dia.	Focal length			14						Model		3Z4S-		EXR		FZ-LE	SR				
Aperture (fixed F No.)*2 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 3.8 5.6 8 Depth of field (mm)*3 17.7 26.1 37.2 9.1 13.4 19.2 1.3 1.9 2.7 Maximum sensor size 2/3 inch 2/3 inch mm dia. mm dia. mm cd 0.0 mm future standard to the stan	Optical magnification	Mi27.0 P0.5 Set 0.14 × 0.2 × 0.62 × (40) 100 ×			Set of (40 m	7 tube m, 20 r	s nm,10 mr	m, 5	Set of	f 3 tubes											
Maximum sensor size 2/3 inch Mount C Mount	(fixed F No.) *2	3.8 £	5.6 8	3.8	5.6	8 3. 92 1	8 5. 3 1	6 8 9 2 7		Conter	Its	mm, 2 1.0 mi	.0 mm, m, and	0.5 mm)		(15 m Maxin	m,10 mn num oute	n, 5 mm r diame	ı) ter: 12		
Mount C Mount the O E mm 1.0 mm and 0.0 mm Extension Types attached to	Maximum sensor size			- 0.1	2/3 inch		U 1.	<u> </u>				iviaxin	ium ou	ter diame	ter: 30	mm d	ia.				
	Mount				C Mount					* Da ==	tune the f		10	m and 0	0	Luter -	ion Tub -	o otto - !-	ad to		

Insert the iris range into $\Box \Box \Box \Box \Box$ in the model number as follows. F=1.9 to 3.8: blank F=5.6: FN056 *1

F=8: FN080
*2 F-number can be selected from maximum aperture, 5.6, and 8.0.
*3 When circle of least confusion is 40 μm.

Lenses	For C mount Lenses *	eras
Model	3Z4S-LE SV-EXR	FZ-LESR
Contents	Set of 7 tubes (40 mm, 20 mm, 10 mm, 5 mm, 2.0 mm, 1.0 mm, and 0.5 mm) Maximum outer diameter: 30 mm dia.	Set of 3 tubes (15 mm,10 mm, 5 mm) Maximum outer diameter: 12 mm dia.

Do not use the 0.5-mm, 1.0-mm, and 2.0-mm Extension Tubes attached to each other. Since these Extension Tubes are placed over the threaded section of the Lens or other Extension Tube, the connection may loosen when more than one 0.5-mm, 1.0-mm or 2.0-mm Extension Tube are used Reinforcement is required to protect against vibration when Extension Tubes

when using the Extension Tube, check it on the actual device before using it.

Ratings and Specifications (FZ5 Sensor Controllers)

Туре		High-speed Controllers		Standard Controllers		Lite Controllers				
Mandal		NPN	FZ5-1100 FZ5-1100-10		FZ5-600 FZ5-600-10		FZ5-L350	FZ5-L350-10		
Model		PNP	FZ5-1105 FZ5-1105-10		FZ5-605 FZ5-605-10		FZ5-L355 FZ5-L355-10			
Controller type		·	Controllers integrate	ed with LCD	Г		Box-type controllers			
No. of Cameras			2	4	2	4	2	4		
Connected Came	ra		Can be connected to (Can not be connected)	o FZ-S series. ted to FH-S series.)	Can be connected	to FZ-S series. (Can n-pixel cameras, up t	not be connected to o two cameras can b	FH-S series. When e connected.)		
	When connected to a	intelligent compact camera	752 (H) × 480 (V)		oon looking o millor	r pixer camerae, ap t		o oonnootodi)		
Processing	When connected to a	a 300,000-pixel camera	640 (H) × 480 (V)							
resolution	When connected to a	a 2 million-pixel camera	1600 (H) × 1200 (V)							
When connected to a 5 million-pixel camera			2448 (H) × 2044 (V)							
No. of scenes			128							
When connected to a intelligent Connected to 2 cameras Connected to 3 cameras		232		214						
		77		71						
	compact camera	Connected to 4 cameras	58 53							
		Connected to 1 camera	Color camera: 270,		Color camera: 250	Monochrome Came	ra: 252			
			Monochrome Came	ra: 272	Color camera. 200,	Monochrome Game	14. 202			
	When connected to	Connected to 2 cameras	Color camera: 135, Monochrome Came	ra: 136	Color camera: 125,	Monochrome Came	ra: 126			
	a 300,000-pixel	Connected to 2 compress	Color camera: 90,		Color comoro: 92	Managhrama Camar	. 84			
	camera	Connected to 5 cameras	Monochrome Came	ra: 90	Color camera. 63, r	Nonochiome Camera	a. 04			
		Connected to 4 cameras	Color camera: 67, Monochrome Came	ra: 68	Color camera: 62, I	Monochrome Camera	a: 63			
Number of logged images *1		Connected to 1 camera	Color camera: 43, Monochrome Came	ra: 43	Color camera: 40, I	Monochrome Camera	a: 40			
ggea mageo 1	When connected to a 2 million-pixel	Connected to 2 cameras	Color camera: 21, Monochrome Came	ra: 21	Color camera: 20, I	Monochrome Camera	a: 20			
	camera	Connected to 3 cameras	Color camera: 14, Monochrome Came	ra: 14	Color camera: 13, I	a: 13				
		Connected to 4 cameras	Color camera: 10, Monochrome Came	ra: 10	Color camera: 10, I	Monochrome Camera	əra: 10			
	Connected to 1 camera		Color camera: 16, Monochrome Came	ra: 16	16 Color camera: 11, Monochrome Camera: 11					
When connected to a 5 million-pixel camera		Connected to 2 cameras	Color camera: 8, Monochrome Came	ra: 8	Color camera: 5, M	onochrome Camera:	ι: 5			
		Connected to 3 cameras	Color camera: 5, Monochrome Came	ra: 5		-	_			
0		Connected to 4 cameras	Monochrome Came	ra: 4		-	-			
Operation			Touch pen, mouse,	etc.	iting the flowebort /l		Mouse or similar de	vice		
Settings			Jananese English (Cessing steps by ed	lung the llowchart (F	teip messages provid	led).			
Language			Chinese (Traditional French, Italian, Spar), Korean, German, hish	Japanese, English,	Chinese (simplified)	, Chinese (Traditiona	l)		
Serial communica	tions		RS-232C/422A : 1 CH				RS-232: 1CH			
EtherNet commun	nications		Ethernet 100BASE-	TX/10BASE-T			Ethernet 1000BASE	-T/100BASE-TX/		
EtherNet/ID comm	uniectione		Ethernet port baud rate: 100 Mbps (100Base-TX)							
Ethernet/IP comm	lunications		When used in Multi-	line random-trigger	Base-TX)					
			(When used in Multi- mode) 17 inputs (RESET, S ENCTRIG_Z0, STE	-line random-trigger STEP0/ P1/ENCTRIG_Z1,						
			DSA0 to 1, ENCTRI ENCTRIG_B0 to 1, 29 outputs (RUN/BL GATE0 to 1, OR0 to ERROR, STGOUTO	IG_A0 to 1, DI0 to 7), JSY1, BUSY0, o 1, READY0 to 1, 0 to 3, DO0 to 15)	13 inputs (RESET, STEP0/ ENCTRIG_Z0, DSA0, ENCTRIG_A0, ENCTRIG_B0, DI0 to 7), 26 outputs (RUN, BUSY0, GATE0, OR0, READY0, ERROR, STGOUT0 to 3, DO0 to 15) * STGOUT 2 to 3 only for camera 4 ch type		11 inputs (RESET, STEP, DSA, and DI 0 to 7), 26 outputs (RUN, BUSY, GATE, OR, READY, ERROR, STGOUT 0 to 3, and DO 0 to 15) * STGOUT 2 to 3 only for camera 4 ch type			
		(When used in other 13 inputs (RESET, S ENCTRIG_Z0, DSA ENCTRIG_B0, DIO 26 outputs (RUN, B OR0, READY0, ERI 3, DO0 to 15)	r mode) STEP0/ .0, ENCTRIG_A0, to 7), USY0, GATE0, ROR, STGOUT0 to							
			* STGOUT 2 to 3 o type	nly for camera 4 ch						
Monitor interface		Integrated Controller and LCD 12.1 inch TFT color LCD (Resolution: XGA 1,024 × 768 dots)				Analog RGB video (Resolution: XGA 1	output, 1 channel ,024 \times 768 dots)			
USB interface		4 channels (support	s USB 1.1 and 2.0)			2CH (supports USE	1.1/2.0)			
Power supply voltage *2		20.4 to 26.4 VDC	7.5. A max	5 0 A may	7.5.4 mail	10.4 mail	E E A max			
Current	When connected to a	a 300 000-pixel camera	o.u a max.	7.5 A max.	5.0 A max.	7.5 A max.	4.0 A max.	o.o A max.		
consumption (at 24.0 VDC) *3	When connected to a	a 2 million-pixel camera	3.7 A max.	4.9 A max.	3.7 A max.	4.9 A max.	2.6 A max.	2.9 A max.		
	when connected to a	a 5 million-pixel camera	Operating: 0 to 45 °	C for low cooling fan	speeds. 0 to 50 °C	for high cooling fan	Operating: 0 to 45	C. 0 to 50 °C		
Ambient temperat	ure range		speeds Storage: -20 to 65 °	C (with no icing or c	ondensation)		Storage: -20 to 65 (with no icing or cor	C idensation)		
Ambient humidity	range		Operating and stora	ge: 35% to 85% (with	h no condensation)		~			
Weight			Approx. 3.2 kg	Approx. 3.4 kg	Approx. 3.2 kg	Approx. 3.4 kg	Approx. 1.8 kg			
Accessories			Touch pen (one, ins	ide the front panel),	Instruction Manual,	6 mounting brackets	Instruction Manual			

*1 *2

The image logging capacity changes when multiple cameras of different types are connected at the same time. Do not ground the positive terminal of the 24-VDC power supply to a Lite Controller. If the positive terminal is grounded, electrical shock may occur when an SG (0-V) part, such as the case of the Controller or Camera, is touched. The current consumption when the maximum number of cameras supported by each controller are connected. If a lighting controller model is connected to a lamp, the current consumption is as high as when an intelligent compact camera is connected. *3

Ratings and Specifications (Cameras)

Digital CCD Cameras

Model	FZ-S	FZ-SC	FZ-S2M	FZ-SC2M	FZ-S5M2	FZ-SC5M2
Image elements	Interline transfer readi CCD image elements	ng all pixels, (1/3-inch equivalent)	Interline transfer reading all pixels, CCD image elements (1/1.8-inch equivalent)		Interline transfer reading all pixels, CCD image elements (2/3-inch equivalent)	
Color/Monochrome	Monochrome	Color	Monochrome	Color	Monochrome	Color
Effective pixels	640 (H) × 480 (V)		1600 (H) × 1200 (V)		2448 (H) × 2044 (V)	
Imaging area H x V (opposing corner)	4.8 × 3.6 (6.0mm)		7.1 × 5.4 (8.9mm)		8.4 × 7.1 (11mm)	
Pixel size	7.4 (µm) \times 7.4 (µm)		4.4 (µm) \times 4.4 (µm)		3.45 (µm) \times 3.45 (µm)	
Shutter function	Electronic shutter; sel	Electronic shutter; select shutter speeds from 20 µs to 100 ms				
Partial function	12 to 480 lines		12 to 1200 lines		12 to 2044 lines	
Frame rate (Image Acquisition Time)	80 fps (12.5 ms)		30 fps (33.3 ms)		16 fps (62.5 ms)	
Lens mounting	C mount					
Field of vision, installation distance	Selecting a lens accor	Selecting a lens according to the field of vision and installation distance				
Ambient temperature range	Operating: 0 to 50 °C Storage: -25 to 65 °C (with no icing or conde	ensation)	Operating: 0 to 40 °C Storage: -25 to 65 °C (with no icing or condensation)			
Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)					
Weight	Approx. 55 g		Approx. 76 g		Approx.140 g	
Accessories	Instruction manual					

Small CCD Digital Cameras

Model	FZ-SF	FZ-SFC	FZ-SP	FZ-SPC			
Image elements	Interline transfer reading all pixels	Interline transfer reading all pixels, CCD image elements (1/3-inch equivalent)					
Color/Monochrome	Monochrome	Vonochrome Color Monochrome Color					
Effective pixels	640 (H) × 480 (V)						
Imaging area H x V (opposing corner)	4.8 × 3.6 (6.0mm)	1.8 × 3.6 (6.0mm)					
Pixel size	7.4 (μm) × 7.4 (μm)						
Shutter function	Electronic shutter; select shutter s	speeds from 20 μm to 100 ms					
Partial function	12 to 480 lines	12 to 480 lines					
Frame rate (Image Acquisition Time)	80 fps (12.5ms)	80 fps (12.5ms)					
Lens mounting	Special mount (M10.5 P0.5)	Special mount (M10.5 P0.5)					
Field of vision, installation distance	Selecting a lens according to the field of vision and installation distance						
Ambient temperature range	Operating: 0 to 50 °C (camera amp) 0 to 45 °C (camera head) Storage: -25 to 65 °C (with no icing or condensation)						
Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)						
Weight	Approx. 150 g						
Accessories	Instruction manual, installation bracket, Four mounting brackets (M2) Instruction manual						

High-speed CCD Cameras

Model	FZ-SH	FZ-SHC		
Image elements	Interline transfer reading all pixels, CCD image elements (1/3-inch equivalent)			
Color/Monochrome	Monochrome	Color		
Effective pixels	640 (H) × 480 (V)			
Imaging area H x V (opposing corner)	4.8 × 3.6 (6.0mm)			
Pixel size	7.4 (μm) × 7.4 (μm)			
Shutter function	Electronic shutter; select shutter speeds from 1/10 to 1/50,000 s			
Partial function	12 to 480 lines			
Frame rate (Image Acquisition Time)	204 fps (4.9ms)			
Field of vision, installation distance Selecting a lens according to the field of vision and install distance				
Ambient temperature range Operating: 0 to 40 °C Storage: -25 to 65 °C (with no icing or condensation)				
Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)			
Weight	Approx. 105 g			
Accessories	Instruction manual			

Intelligent Compact CMOS Cameras

Model	FZ-SQ010F	FZ-SQ050F	FZ-SQ100F	FZ-SQ100N		
Image elements	CMOS color image elements (CMOS color image elements (1/3-inch equivalent)				
Color/Monochrome	Color					
Effective pixels	752 (H) × 480 (V)					
Imaging area H x V (opposing corner)	4.51 × 2.88 (5.35mm)	4.51 × 2.88 (5.35mm)				
Pixel size	6.0 (μm) × 6.0 (μm)	5.0 (μm) × 6.0 (μm)				
Shutter function	1/250 to 1/32,258					
Partial function	8 to 480 lines					
Frame rate (Image Acquisition Time)	60 fps (16.7 ms)					
Field of vision	7.5×4.7 to 13×8.2 mm	13×8.2 to 53×33 mm	53 \times 33 to 240 \times 153 mm	29×18 to 300×191 mm		
Installation distance	38 to 60 mm	56 to 215 mm	220 to 970 mm	32 to 380 mm		
LED class *	Risk Group2					
Ambient temperature range	Operating: 0 to 50 °C Storage: -25 to 65 °C					
Ambient humidity range	Operating and storage: 35% to	Operating and storage: 35% to 85% (with no condensation)				
Weight	Approx. 150 g Approx. 140 g					
Accessories	Mounting bracket (FQ-XL), po	larizing filter attachment (FQ-XF1), instruction manual and warning la	abel		

* Applicable standards: IEC62471-2

Narrow View FZ-SQ010F

 Wide View (Long-distance) FZ-SQ100F

Standard FZ-SQ050F

• Wide View (Short-distance)

Ratings and Specifications (Cable, LCD Monitor)

Camera Cables

Model	FZ-VS3 (2 m)	FZ-VSB3 (2 m)	FZ-VSL3 (2 m)	FZ-VSLB3 (2 m)	
Shock resistiveness (durability)	10 to 150 Hz single amplitude 0.15 mm 3 directions, 8 strokes, 4 times				
Ambient temperature range	Operation and storage: 0 to 65 °C (with no icing or condensation)				
Ambient humidity range	Operation and storage: 40 to 70%RH (with no condensation)				
Ambient atmosphere	No corrosive gases				
Material	Cable sheath, connector: PVC				
Minimum bending radius	69mm	69mm	69mm	69mm	
Weight	Approx. 170 g	Approx. 180 g	Approx. 170 g	Approx. 180 g	

Cable Extension Unit

Model	FZ-VSJ
Power supply voltage *1	11.5 to 13.5 VDC
Current consumption *2	1.5 A max.
Ambient temperature range	Operating: 0 to 50 °C; Storage: -25 to 65 °C (with no icing or condensation)
Ambient humidity range	Operating and storage: 35 to 85% (with no condensation)
Weight	Approx. 240 g
Accessories	Instruction Sheet and 4 mounting screws

 *1 A 12-VDC power supply must be provided to the Cable Extension Unit when connecting the Intelligent Compact Camera, or the Lighting Controller.

*2 The current consumption shows when connecting the Cable Extension Unit to an external power supply.

LCD Monitor

Model	FZ-M08
Size	8.4 inches
Туре	Liquid crystal color TFT
Resolution	1,024 × 768 dots
Input signal	Analog RGB video input, 1 channel
Power supply volt- age	21.6 to 26.4 VDC
Current consumption	Approx. 0.7 A max.
Ambient temperature range	Operating: 0 to 50 °C; Storage: -25 to 65 °C (with no icing or condensation)
Ambient humidity range	Operating and storage: 35 to 85% (with no condensa- tion)
Weight	Approx. 1.2 kg
Accessories	Instruction Sheet and 4 mounting brackets

Components and Functions

Example of the FZ5 Sensor Controllers LCD-integrated type (4-camera type)

Long-distance Camera Cables

•				
Model	FZ-VS4 (15 m)	FZ-VSL4 (15 m)		
Shock resistiveness	10 to 150 Hz single amplitude 0.15 mm			
(durability)	3 directions, 8 strokes, 4	times		
Ambient	Operation and storage: 0 to 65 °C			
temperature range				
Ambient humidity range	Operation and storage: 40 to 70%RH (with no condensation)			
Ambient atmosphere	No corrosive gases			
Material	Cable sheath, connector: PVC			
Minimum bending radius	78 mm			
Weight	Approx. 1400 g			

Parallel Cable

Model	FZ-VP	FZ-VPX		
Vibration resistiveness	10 to 150 Hz single amplitude 0.15 mm 3 directions, 8 strokes, 4 times			
Ambient temperature range	orage: -20 to 65 °C sation)			
Ambient humidity range	Operation and storage: 35 to 85%RH (with no condensation)			
Ambient atmosphere	No corrosive gases			
Material	Cable sheath: heat-resistant PVC Connector:			
Minimum bending radius	75 mm			
Weight	Approx. 160 g	Approx. 180 g		

LED Monitor Cable

Model	FZ-VM
Vibration resistiveness	10 to 150 Hz single amplitude 0.15 mm 3 directions, 8 strokes, 4 times
Ambient temperature range	Operation: 0 to 50 °C; Storage: -20 to 65 °C (with no icing or condensation)
Ambient humidity range	Operation and storage: 35 to 85%RH (with no condensation)
Ambient atmosphere	No corrosive gases
Material	Cable sheath: heat-resistant PVC Connector: PVC
Minimum bending radius	75 mm
Weight	Approx. 170 g

	Name	Description
[1]	POWER LED	Lit while power is ON.
[2]	RUN LED	Lit while the controller is in Run Mode.
[3]	ERROR LED	Lit when an error has occurred.
[4]	I/O connector (control lines, data lines)	Connect the controller to external devices such as a sync sensor and PLC.
[5]	Camera connector	Connect cameras.
[6]	Power	Connect a DC power supply. Wire the power supply unit independently of other devices. After wiring, replace the terminal cover.
[7]	Ground terminal	Connect the ground wire. Make sure that the controller is grounded with a separate ground wire.
[8]	Monitor connector (analog RGB)	Connect a monitor. (Provided with Lite controller type only)
[9]	RS-232C/RS-422 connector	Connect an external device such as a personal computer or PLC.
[10]	USB connector	Connect a track ball, mouse and USB memory. A total of four USB ports are provided and any of them can be used. However, when connecting two or more USB memories, do not connect them to adjacent ports. Doing so may cause the USB memories to come into contact, resulting in malfunction or damage.
[11]	EtherNet connector	Connect the controller to a personal computer.
[12]	Touch pen (holder)	A touch pen is stored. (Provided with the LCD integrated type only)

Processing Items

Group	lcon	Processing Item		Group	Icon		Processing Item
	ů	Search	Used to identify the shapes and calculate the position of measurement objects.			Camera Image Input HDR	Create high-dynamic range images by acquiring several images with different conditions.
-	1000 1000	Flexible Search	Recognizing the shapes of workpieces with variation and detecting their positions.	land land an	Gille	Camera Image Input HDRLite	HDR function for FZ-SQ Intelligent Compact Cameras.
	***	Sensitive Search	Search a small difference by dividing the search model in detail, and calculating the correlation.	input image	Q	Camera Switch	To switch the cameras used for measurement. Not input images from cameras again.
	-	ECM Search	Used to search the similar part of model form input image. Detect the evaluation value and position.			Measurement Image Switching	To switch the images used for measurement. Not input images from camera again.
	÷	EC Circle Search	and get position, radius and quantity in high preciseness.			Position Compensation	measurement is performed by correcting position of input images.
	0 4 ⁴ 4	Shape Search II	Used to search the similar part of model from input image regardless of environmental changes.		×	Filtering	Used for processing images input from cameras in order to make them easier to be measured.
-		Shape Search III	Robust detection of positions is possible at high- speed and with high precision		3	Backgrond Suppression	To enhance contrast of images by extracting color in specified brightness.
	100 A		incorporating environmental fluctuations, such as dif- ferences in individual shapes of the workpieces, pose fluctuations, noise superimposition and shielding.		THE R	Brightness Correct Filter	Track brightness change of entire screen and remove gradual brightness change such as uneven brightness.
-	*	EC Corner	This processing item measures a corner position (cor- ner) of a workpiece.			Color Gray Filter	Color image is converted into monochrome images to emphasize specific color.
-	4.4	Ec Cross	The center position of a crosshair shape is mea- sured using the lines			Extract Color Filter	Convert color image to color extracted image or binary image.
-	-		crosshair. Used when various kinds of products on the assembly line need	Componente	-	Anti Color Shading	uniformizing max.2 specified colors.
-	ð	Classification	to be sorted and identified. Measure position of measurement objects	image		Filter II	and diagonal stripes.
	-	Edge Position	according to the color change in measurement area.		ABC (C)	Transformation	for OCR or pattern inspection printed on circle.
-	888	Edge Pitch	Detect edges by color change in measurement area. Used for calculating number of pins of IC and		4	Correction	image.
-	*	Scan Edge	connectors. Measure peak/bottom edge position of workpieces according to the color change in separated		1.4.1	Machine Simulator	age when each stage or robot axis is controlled can be checked.
3		Scan Edge Width	measurement area. Measure max/min/average width of workpieces according to the color change in separated			Image Subtraction	I he registered model image and measurement image are compared and only the different pixels are extracted and converted to an image.
	Q	Circular Scan Edge Position	Measure center axis, diameter and radius of circular workpieces.			Advanced filter	Process the images acquired from cameras in order to make them easier to measure. This processing item consolidates existing image conversion filtering into one processing item
Measurement	Q	Circular Scan Edge Width	Measure center axis, width and thickness of ring workpieces.			Panorama	and adds extra functions.
	1	Intersection	Calculate approximate lines from the edge information on two sides of a square workpiece to measure the an-				Advanced arithmetic processing can be easily
-	B	Color Data	Used for detecting presence and mixed varieties of products by using color average and deviation.				processing items. This function is convenient when the user wants to cal-
-		Gravity and Area	Used to measure area, center of gravity of workpices by extracting the color to be measured.			Unit Calculation Macro	culate a value using an original calculation formula or change the set value or system data of a processing item
-		Labeling	Used to measure number, area and gravity of workpieces by extracting registered color. Selecting one region of extracted Labeling, and get that		ABC	Calculation	Used when using the judge results and measured values of ProcItem which are registered in processing units
_		Label Data	measurement. Area and Gravity position can be got and judged.		*]+	Line Regression	Used for calculating regression line from plural
	N	Defect	Used for appearance measurement of plain-color measurement objects such as defects, stains and hurrs		Ō	Circle Regression	Used for calculating regression circle from plural measurement coordinate.
-	A	Precise Defect	Check the defect on the object. Parameters for extraction defect can be set precisely.		G	Precise Calibration	Used for calibration corresponding to trapezoidal distortion and lens distortion.
-		Fine Matching	Difference can be detected by overlapping and comparing (matching) registered fine images with input		User	User Data	Used for setting of the data that can be used as common constants and variables in scene group data
-	AB	Character Inspect	Recognize character according correlation search with model image registered in [Model Dictionary].	Support	æ	Set Unit Data	Used to change the ProcItem data (setting parameters,etc.) that has been set up in a scene.
	Date 08-02-1	Date Verification	Reading character string is verified with internal date.	measurement	-	Get Unit Data	Used to get one data (measured results, setting parameters,etc.) of ProcItem that has been set up in a
-	A	Model Dictionary	Register character pattern as dictionary. The pattern is used in [Character Inspection].			Set Unit Figure	Used for re-setting the figure data (model, measurement area) registered in an unit.
	<u>X8</u>	2DCode *2	Recognize 2D code and display where the code quality is poor. Recognize barcode, verify and output decoded characters.		(]	Get Unit Figure	Used for get the figure data (model, measurement area) registered in an unit.
-		Barcode *1				Trend Monitor	Used for displaying the information about results on the monitor, facilitating to avoid NG and analyze
	OCF	OCR	Recognize and read characters in images as character information.		6+		causes. Used for saving the measurement images to the
	OCR	OCR User Dictionary	Register dictionary data to use for OCR.		₩ ⇒	Image Conversion	memory and USB memory. Used for saving the measurement images in JPEG
		Circle Angle	Used for calculating angle of inclination of circular measurement objects.		₩ →	Logging	and BMP format. Used for saving the measurement data to the
	1	Glue Bead Inspection	You can inspect coating of a specified color for gaps or runoffs along the coating path.		-9- -02-		memory and USB memory. Used for calculating the elapsed time since the
	M.	Camera Image Input	To input images from cameras. And set up the conditions to input images from cameras. (To FZ5 Sensor Controllers only)		20 20 20	Lapsed Lime Wait	measurement trigger input. Processing is stopped only at the set time. The
Input Image	噢	Camera Image Input FH Input FH					standby time is set by the unit of [ms].
	_		lers only)				

Group	lcon	Processing Item			Group	lcon	Processing Item		
	4	Focus	Focus setting is supported.			-	Conditional Branch	Used where more than two kinds of products on the production line need to detected separately.	
	70	Iris	Focus and aperture setting is supported.			\$0	End	This ProcItem must be set up as the last processing unit of a branch.	
		Parallelize*3	A part of the measurement flow is divided into two or more tasks and processed in parallel to shorten the measurement		1000 Notes	DI Branch	Same as ProcItem "Branch". But you can change the targets of conditional branching via external inputs.		
	120		time. This processing item is placed at the top of processing to be performed in parallel.		Branch	000	Control Flow Normal	Set the measurement flow processing into the wait state in which the specific no-protocol command can be executed	
	Det	Parallelize Task*3	A part of the measurement flow is divided into two or more tasks and processed in parallel to shorten the measurement time. This processing item is placed im- mediately before processing to be performed in paral- lel between Parallelize and Parallelize End.	B		909 \$	Control Flow PLC Link	Set the measurement flow processing into the wait state in which the specific PLC Link command can be executed.	
	-Q					1	Control Flow Parallel	Set the measurement flow processing into the wait state in which the specific parallel command can be executed.	
		Statistics	Used when you need to calculate an average of multiple measurement results.	ou need to calculate an ultiple measurement results.		999	Control Flow Fieldbus	Set the measurement flow processing into the wait state in which the specific Fieldbus command can be executed.	
	b e	Referrence Calib Data	ormpensation data held under other processing tems can be referenced. The specified position angle is calculated from the neasured positions. Sets and stores data related to stages.				Selective Branch	Easily branch to multiple destinations.	
	×	Position Data Calculation			Output results	Ш	Data Output	Used when you need to output data to the external devices such as PLC or PC via serial ports.	
Support	<u>+</u>	Stage Data				<u></u>	Parallel Data Output	Used when you need to output data to the external devices such as PLC or PC via parallel ports.	
measurement	measurement Rol		Sets and stores data related to robots.			<u>.</u>	Parallel Judgement Output	Used when you need to output judgement results to the external devices such as PLC or PC via	
	¢,	Vision Master Calibration	In Master bration law movement amount of the control equipment necessary for calibration.				Fieldbus Data	Outputs data to an external device, such as a Programmable Controller, through a fieldbus	
	PLC Mastoer Calibration Calibration data is created using a communication command from PLC.				-	Deput Display	interface. Used for displaying the texts or the figures in the		
	Conver Data	Convert Position Data	The position angle after the specified axis move- ment is calculated.	_				camera image.	
	4	Movement Single Position	The axis movement that is required to match the mea- sured position angle to the reference position angle is calculated		Output result	NC	Display Image File	Display selected image tile. Display the last NG images.	
	HI I	Movement Multi Points	The axis movements that are required to match the measured position angles to the corresponding ref- erence position angles are calculated.		*1 Bar Cod Code 39 GS1-128	Bar Codes that can be read : JAN/EAN/UPC (including add-on codes Code 39, Codabar (NW-7), ITF (Interleaved 2 of 5), Code 93, Code 1 GS1-128, GS1 DataBar (RSS-14 / RSS Limited / RSS Expanded), Phormacode			
	+	Detection Point	Obtains position/angle information by r eferring to the coordinate values measured with the Mea- surement Processing Unit.	*	*2 2D Code *3 FZ5-L3	es that ca	n be read : Data controllers do no	Matrix (ECC200), QR Code ot support.	
		Camera Calibration	By setting the camera calibration, the measure- ment result can be converted and output as actual dimensions.						
	±0	Data Save	The set data can be saved in the controller main unit or as scene data. The data is held even after the FH/FZ power is turned off.						

Dimensions

Sensor Controllers

(Unit: mm)

Small digital CCD cameras

Camera amplifier

Can be used for both flat cameras and pen-shaped cameras

Intelligent Compact CMOS Cameras

Cables

Camera Cable

Right-angle Camera Cable

(10)

(e)

Long-distance Camera Cable

Π

(40)

rectangular connector

(40)

26-pin rectangular connector

Π(

26-pin

Camera Cable FZ-VS3

FZ-VSL3

FZ-VS4

(12)

Ó

(24)

(*1

L (*3)

7.8 dia

7.5 dia.

(100)

26-pin rectangular connector

(100)

(*2)

#0

]=

- C

Ê

Bend resistant Camera Cable FZ-VSB3

Bend resistant Right-angle Camera Cable

Long-distance Right-angle Camera Cable

FZ-VSL4

Parallel Cable

*1. cable is available in 2m/5m.

FZ-VPX (*1) 35.4 6.9 dia. 50-pin 50-pin square connector

square connector

*1. cable is available in 2m/5m

LED Monitor Cable FZ-VM

*1. cable is available in 2m/5m

Ē

Camera Cable Extension Unit

Extension Tubes for Small Camera

Lens for Small Camera FZ-LES Series

* Overall length is available in 16.4mm/19.7mm/23.1mm/25.5mm.

Optical Chart

Extension tubes 15 mm

12 dia

Meaning of Optical Chart

The X axis of the optical chart shows the field of vision (mm) (*1), and the Y axis of the optical chart shows the camera installation distance (mm) (*2).

*1. The lengths of the fields of vision given in the optica charts are the lengths of the Y axis.

*2. The vertical axis represents WD for small cameras.

Related Manuals

Man.No.	Model number	Manual
Z340	FH/FZ5	Vision System FH/FZ5 Series User's Manual
Z341	FH/FZ5	Vision System FH/FZ5 Series Processinng Item Function Reference Manual
Z342	FH/FZ5	Vision System FH/FZ5 Series User's Manual for Communications Settings

Terms and Conditions Agreement

Read and understand this catalog.

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.

- (a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
- (b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.

See http://www.omron.com/global/ or contact your Omron representative for published information.

Limitation on Liability; Etc.

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Performance Data.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications.

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.

Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Note: Do not use this document to operate the Unit.

OMRON Corporation Industrial Automation Company Tokyo, JAPAN

Contact: www.ia.omron.com

Regional Headquarters OMRON EUROPE B.V. Sensor Business Unit Carl-Benz-Str. 4, D-71154 Nufringen, Germany Tel: (49) 7032-811-0/Fax: (49) 7032-811-199

OMRON ASIA PACIFIC PTE. LTD. No. 438A Alexandra Road # 05-05/08 (Lobby 2), Alexandra Technopark, Singapore 119967 Tel: (65) 6835-3011/Fax: (65) 6835-2711 OMRON ELECTRONICS LLC 2895 Greenspoint Parkway, Suite 200 Hoffman Estates, IL 60169 U.S.A Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

OMRON (CHINA) CO., LTD. Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road, PuDong New Area, Shanghai, 200120, China Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200 Authorized Distributor:

© OMRON Corporation 2015 All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice. CSM_4_3_0416 Cat. No. Q203-E1-01 0115(0115)