INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO – IFSP PEDRO FERNANDO POVEDA

DETERMINAÇÃO DA POTÊNCIA DE CORTE INSTANTÂNEA EM TORNO CNC POR MEIO DO MONITORAMENTO DA DEMANDA DE POTÊNCIA ELÉTRICA

> São Paulo 2018

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO – IFSP PEDRO FERNANDO POVEDA

DETERMINAÇÃO DA POTÊNCIA DE CORTE INSTANTÂNEA EM TORNO CNC POR MEIO DO MONITORAMENTO DA DEMANDA DE POTÊNCIA ELÉTRICA

Dissertação apresentada ao Instituto Federal de Educação, Ciência e Tecnologia de São Paulo -IFSP, como parte dos requisitos para conclusão do curso de Mestrado Profissional em Automação e Controle de Processos.

Orientador: Prof. Dr. Ricardo Pires

São Paulo 2018

Catalogação na fonte Biblioteca Francisco Montojos - IFSP Campus São Paulo Dados fornecidos pelo(a) autor(a)

P739	Poveda, Pedro Fernando Determinação da potência de corte instantânea em torno cnc por meio do monitoramento da demanda de potência elétrica / Pedro Fernando Poveda. São Paulo: [s.n.], 2018. 88 f. il.
	Orientador: Ricardo Pires
	Dissertação (Mestrado Profissional em Automação e Controle de Processos) - Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, IFSP, 2018.
	1. Potência de Corte. 2. Desgaste de Ferramentas. 3. Parâmetros de Usinagem. 4. Usinagem Em Torno Cnc. 5. Aquisição E Tratamento de Sinais. I. Instituto Federal de Educação, Ciência e Tecnologia de São Paulo II. Título.
CDD	

	INSTITUTO FEDERA

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO *CAMPUS* SÃO PAULO DIRETORIA GERAL DO *CAMPUS* SÃO PAULO Coordenadoria de Registros Escolares de Pós-Graduação

ATA DE EXAME DE DEFESA DE DISSERTAÇÃO

Nome do Programa: Mestrado Profissional em Automação e Controle de Processos

Nome do(a) Aluno(a): Pedro Fernando Poveda

Nome do(a) Orientador(a): Prof. Dr. Ricardo Pires

Nome do(a) Coorientador(a):

Título do Trabalho: "Determinação da potência de corte instantânea em torno CNC por meio do monitoramento da demanda de potência elétrica"

Abaixo o resultado de cada participante da Banca Examinadora

Nome completo dos Participantes Titulares da Banca	Sigla da Instituição	Aprovado / Não Aprovado
Prof. Dr. Ricardo Pires- Orientador	IFSP – SPO	ignovado
Prof. Dr. Cesar da Costa - Membro Interno	IFSP – SPO	A prova do
Prof. Dr. Amauri Hassui – Membro Externo	UNICAMP	APKOVADO
Nome completo dos Participantes Suplentes da Banca	Sigla da Instituição	Aprovado / Não Aprovado
Prof. Dr. Paulo Sergio Dainez - Membro Interno	IFSP – SPO	
Prof. Dr. Daniel Iwao Suyama – Membro Externo	UNICAMP	

Considerando-o: [X] APROVADO [] NÃO APROVADO

Assinaturas

São Paulo, <u>16</u> de <u>movið</u> de <u>2018</u>

Observa

Presidente da Banca

Ricardo Pires

pull Membro Externo 0 10 7

Membro Interno

Observações:

DEDICATÓRIA

Dedico este trabalho ao meu falecido pai Pedro Poveda, exemplo, amigo, conselheiro e incentivador em todos os momentos que compartilhamos juntos. À minha mãe Luiza, pelo amor e dedicação incondicional. À minha esposa Eliane, sempre companheira nos bons e maus momentos desta jornada. Aos meus filhos Pedro Henrique e Luiz Gustavo, que me ensinam muito e aos quais me esforço para ser exemplo de retidão e esforço.

AGRADECIMENTOS

Agradeço ao meu orientador Dr. Ricardo Pires, incentivador e exemplo de professor e pesquisador dedicado, atencioso, paciente e minucioso nas correções deste trabalho, um ser humano de bondade, generosidade e humildade imensas.

Agradeço aos professores Dr. Givanildo Alves dos Santos e Dr. Amauri Hassui pelas valiosas considerações que foram de grande valia no aprimoramento da qualidade deste trabalho.

Agradeço aos professores que conheci neste programa de mestrado, Dr. Alexandre Simião Caporali e Dr. Cesar da Costa, que muito me ensinaram e acabaram por se tornar amigos e parceiros em outros projetos.

Agradeço também a todos os amigos e colegas professores do Departamento de Mecânica do Instituto Federal de São Paulo, campus São Paulo, nos quais me inspiro como professor e pesquisador.

"Quanto mais aprendo, mais me dou conta da minha ignorância"

Albert Einstein

RESUMO

Quando se elaboram programas para usinagem em máquinas com CNC, uma das grandes dificuldades é a escolha dos parâmetros de usinagem mais adequados a cada situação de forma a otimizar a relação entre volume produzido e ferramentas de usinagem consumidas. Frequentemente, somente após várias peças produzidas se chega a resultados próximos dos ideais. Neste trabalho, buscou-se o desenvolvimento de um sistema de baixo custo, não invasivo, para determinação e indicação da potência de corte instantânea (em tempo real) mediante o monitoramento da potência elétrica demandada em um torno CNC, de forma a se observar a progressiva perda de eficiência nos processos de usinagem em razão do desgaste das ferramentas e agilizar a definição dos parâmetros mais adequados ao processo em curso. Foi desenvolvido um dispositivo para aquisição e tratamento dos sinais de correntes e tensões elétricas, para informação em tempo real da potência elétrica demandada pela máquina, relacionando-a com a potência de corte teórica na operação de usinagem em curso. O sistema mostrou-se eficiente na comprovação de haver uma relação entre o nível de potência elétrica e a potência de corte respectiva no dado instante. Também foi possível aferir o aumento da Potência de Corte, determinada a partir do monitoramento da variação de demanda de potência elétrica pela máquina, conforme a ferramenta se desgasta no processo de usinagem em curso. Apesar de os resultados não permitirem concluir que o aparato e metodologia desenvolvidos apresentam o nível ideal de eficiência e praticidade para serem considerados "prontos e acabados", pode-se considerar que significativo avanço foi conquistado neste sentido. Como todo projeto de inovação, precisa ser aprofundado e aperfeiçoado, para que possa se tornar cada vez mais prático, eficiente e competitivo.

Palavras-chave: Potência de corte, Desgaste de Ferramentas, Parâmetros de usinagem, Usinagem em Torno CNC, Aquisição e tratamento de sinais.

ABSTRACT

When machining programs are developed in CNC machines, one of the great difficulties is choosing the most appropriate machining parameters for each situation in order to optimize the ratio between the volume produced and the machining tools consumed. Often, only after several pieces are produced results close to ideals. In this work, the development of a low-cost, non-invasive system was used to determine and indicate the instantaneous (real time) cutting power by monitoring the electric power demanded in a CNC lathe, in order to observe the Progressive loss of efficiency in machining processes due to tool wear. A device was developed to capture and treat current and voltage signals for real-time information on the electrical power demanded by the machine, relating it to the theoretical power of the current machining operation. The system proved to be efficient in proving that there is a relation between the electric power level and the respective cutting power at a given instant. It was also possible to gauge the increase in Cutting Power, determined from the monitoring of the variation of electric power demand by the machine, as the tool wears out in the current machining process. Although the results do not allow to conclude that the apparatus and methodology developed have the ideal level of efficiency and practicality to be considered "ready and finished", it can be considered that significant progress has been made in this regard. Like any innovation project, it needs to be deepened and improved, so that it can become more and more practical, efficient and competitive. In the last part of the work, the aspects to be developed to make possible an efficient application of the methodology and the developed system are presented.

Keywords: CNC machine tool, CNC lathe, Machining parameters, Cutting tools,

SUMÁRIO

RESUMO	8
ABSTRACT	9
SUMÁRIO	10
LISTA DE FIGURAS	12
LISTA DE TABELAS	14
LISTA DE ABREVIATURAS E SIGLAS	15
1 INTRODUÇÃO	16
1.1 Objetivo geral	20
1.2 Objetivos específicos	20
2 REVISÃO BIBLIOGRÁFICA	21
3 FUNDAMENTAÇÃO TEÓRICA	25
3.1 Fluxo de Energia em Sistemas	25
3.2 Potência Elétrica em um Sistema Trifásico	26
3.3 Cálculo da Potência de Corte Teórica	28
3.3.1 Área da seção de usinagem (A)	28
3.3.2 Força de Corte Teórica (Fc)	29
3.3.3 Velocidade de Corte (vc)	29
3.3.4 Potência de Corte Teórica (Pc)	30
4 METODOLOGIA	31
4.1 Introdução	31
4.2 Máquina, ferramentas e materiais utilizados	32
4.3 Ensaios (operações) de Usinagem	36
4.3.1 Primeira etapa de ensaios	36
4.3.2 Segunda etapa de ensaios	38
4.3.3 Terceira etapa de ensaios	39
4.4 Captura e tratamento dos Sinais	39
5 RESULTADOS	46
5.1 Resultados da primeira etapa de ensaios	46
5.1.1 Análise dos Resultados	47
5.1.2 Conclusões da primeira etapa dos ensaios	49
5.2 Segunda etapa de ensaios	49

5.2.1 Paridade dos valores das correntes medidas	.50
5.2.2 Resultados da segunda etapa dos ensaios	.51
5.2.3 Análise dos resultados da segunda etapa	.53
5.2.4 Conclusões da segunda etapa dos ensaios	.55
5.3 Terceira etapa dos ensaios	.55
5.3.1 Resultados da terceira etapa dos ensaios	.55
5.3.2 Conclusões da terceira etapa de ensaios	.57
6 CONCLUSÕES E TRABALHOS FUTUROS	.58
REFERÊNCIAS BIBLIOGRÁFICAS	.59
ANEXOS	.62
APÊNDICES	.66

LISTA DE FIGURAS

Figura 1: Insertos de Metal Duro	.17
Figura 2: Insertos (pastilhas) de Metal Duro Montadas em Suportes	.17
Figura 3: Parâmetros de corte na usinagem por torneamento	.18
Figura 4: Parâmentros de Usinagem recomendados	.18
Figura 5: Potências elétrica e mecânica em função da profundidade	.23
Figura 6: Fluxo de energia em um sistema	.25
Figura 7: Método dos dois wattimetros aplicado à carga conectada em Δ ou Y	.26
Figura 8: Verificação se as potências parciais devem ser somadas ou subtraídas	.26
Figura 9: Foto da placa de um dos servomotores da máquina	.27
Figura 10 - Seção de usinagem no torneamento	.28
Figura 11: Ferramenta avança em Vazio e em Usinagem	.31
Figura 12: Torno marca Romi modelo Centur 30D com CNC Siemens	.33
Figura 13: Torno marca Ergomat modelo TND-200 com CNC Fanuc	.33
Figura 14: Corpos de prova dos materiais para medição da dureza	.35
Figura 15: Ensaios de usinagem	.36
Figura 16: Pino em aço inoxidável AISI 304	.39
Figura 17: Módulos controladores	.40
Figura 18: Sensores de corrente	.40
Figura 19: Placa Arduino Uno	.41
Figura 20: Dispositivo de Aquisição, condicionamento e tratamento dos sinais	.41
Figura 21: Primeiro gráfico e equação para calibração da tensão	.43
Figura 22: Segundo gráfico e equação para calibração da tensão	.43
Figura 23: Curva (senóide) característica da corrente alternada	.43
Figura 24: Termite e seu ambiente de configuração e recepção de sinais	.45
Figura 25: Gráfico comparativo das potências elétricas medidas com as potências corte teóricas	de .48

Figura 26: Gráfico detalhando os picos de corrente (A) ao longo do tempo decorrido nos ensaios (ms)50
Figura 27: Detalhe do pico de corrente 4 mostrando o intervalo de usinagem51
Figura 28 Gráfico e equação da Potência Elétrica em função da velocidade angular do eixo árvore53
Figura 29: Gráfico e equação da diferença de potência em função da potência de corte teórica54
Figura 30: Primeira peça produzida no ensaio56
Figura 31: Última peça produzida no ensaio56
Figura 32: Evolução da Potência de Corte em relação às peças produzidas57

LISTA DE TABELAS

Tabela 1: Resultados usinagem do 1º Bloco21
Tabela 2: Resultados usinagem do 2º Bloco21
Tabela 3: Quadro com os parâmetros característicos dos materiais
Tabela 4: Parâmetros de Usinagem nos ensaios da primeira etapa
Tabela 5: Potências Teóricas de Corte em watts
Tabela 6: Parâmetros de Usinagem nos ensaios da segunda etapa
Tabela 7: Potências Teóricas de Corte em watts 38
Tabela 8: Valores capturados (lidos) e medidos das Tensões43
Tabela 9: Calibração dos Sensores de Corrente44
Tabela 10: Resumo dos Resultados dos Ensaios de Usinagem da 1ª etapa47
Tabela 11: Quadro comparativo entre as Potências de corte obtidas e teóricas48
Tabela 12: Média dos resultados da 2ª etapa52
Tabela 13: Valores da potência elétrica medida em função da velocidade angular do eixo árvore53
Tabela 14: Valores da diferença de potência elétrica medida em função da potência de corte
Tabela 15: Resultados obtidos com a peça em produção56

LISTA DE ABREVIATURAS E SIGLAS

- ABNT Associação Brasileira de Normas Técnicas
- AISI American Iron and Steel Institute
- CNC Computer Numeric Control (Comando Numérico Computadorizado)
- PC Personal Computer
- RMS Root Mean Square
- SAE Society of Automotive Engineers
- USB Universal Serial Bus

1 INTRODUÇÃO

Na segunda metade do século passado, surgiram as primeiras máquinas para usinagem dotadas de Comandos Numéricos Computadorizados (CNC)¹, que executam as operações de acordo com um programa previamente elaborado, dispensando a habilidade do operador para a produção.

Diversos autores, como Groover (2011), apontam as vantagens que esses equipamentos proporcionam em relação às máquinas convencionais (de operação manual):

- Alta produtividade;
- Possibilidade de fabricação de peças com geometrias mais complexas;
- Grande precisão (tolerâncias dimensionais mais estreitas);
- Melhor acabamento superficial (baixa rugosidade);
- Reprodutividade (todas as peças rigorosamente dentro das especificações) sem necessidade de inspeções constantes;
- Possibilidade de se produzir grande diversidade de peças sem a necessidade de ajustes demorados no equipamento;
- Independência da habilidade dos operadores para se alcançar as especificações desejadas.

Inicialmente, devido aos elevados custos destes equipamentos, poucas indústrias tinham condições financeiras de adquiri-los. Com o ganho de escala ao longo do tempo, redução do custo de componentes eletrônicos e de informática somados às grandes vantagens já mencionadas, o uso se popularizou. Hoje, é inimaginável a indústria, principalmente os setores mecânico e metalúrgico, sem o uso de máquinas-ferramenta CNC.

Por outro lado, devido às altas velocidades de usinagem proporcionadas por essas máquinas, os fabricantes de ferramentas tiveram que desenvolver novos produtos, de forma a potencializar a plena utilização dos recursos produtivos disponíveis. As antigas ferramentas convencionais de aço rápido² não atendiam as exigências demandadas pelos novos equipamentos que surgiam e deram lugar às de

¹ Em inglês a sigla *CNC* é a mesma, abreviação de *Computer Numeric Control*.

² O termo aço rápido vem do inglês "*high-speed steel*", são ferramentas em aços liga (empregando-se diversos elementos de liga como tungstênio, cromo, vanádio, molibidênio, etc.).

metal duro³ apresentadas em diversos formatos normalizados na forma de pastilhas (também denominadas insertos), conforme a Figura 1.

Figura 1 – Insertos de Metal Duro (SANDVIK, 2015)

Para a efetiva utilização em processos de usinagem, essas pastilhas são montadas em suportes adequados, conforme mostrado na Figura 2. A esse conjunto, pastilha mais suporte, denomina-se ferramenta.

Figura 2 – Insertos (pastilhas) de metal duro montadas em suportes (SANDVIK, 2015)

Atualmente, encontram-se no mercado, diversos fabricantes de pastilhas de metal duro para usinagem, que disponibilizam inúmeros modelos de ferramentas, de forma a atender as diferentes condições, decorrentes de variáveis como:

- Diferentes modelos de máquinas CNC;
- Diferentes materiais a serem usinados;
- Técnicas de usinagem distintas para a conformação das peças;
- Tolerâncias e acabamentos superficiais especificados;
- Disponibilidade, tipo de fluido e método de refrigeração durante o processo de usinagem;
- Limitações de custo, produtividade, estoque, logística etc.

³ Metal Duro é um termo genérico dado a materiais compósitos para ferramentas formados por carbonetos.

Quando se elabora um programa para usinagem, devem-se determinar os principais parâmetros de corte (remoção de material da peça em conformação)⁴, conforme detalhado na Figura 3, em que:

- v_c = velocidade de corte em m/min (metros por minuto);
- a_p = profundidade de usinagem em mm (milímetros);
- f_n = avanço em mm/rot (milímetros por rotação).

Figura 3 – Parâmetros de corte na usinagem por torneamento (SANDVICK, 2015) Para cada uma das diferentes opções de ferramentas disponíveis, os fabricantes indicam faixas (intervalos de valores) para os parâmetros de corte, baseados em testes experimentais de usinagem que realizam no desenvolvimento de seus produtos, conforme exemplificado na Figura 4.

CNMG 12406-MM – Parâmetros de Usinagem recomendados para Aços inoxidáveis: a_p : 3,00 mm (0,50-5,70) f_n : 0,25 mm/rot (0,12-0,45) V_c : 240 m/min (275-200)

Figura 4 – Parâmetros de Usinagem recomendados (SANDVICK, 2015)

⁴ Na literatura técnica, "Usinagem" também é tratado como "Conformação com levantamento de aparas" ou "processos com remoção de materiais".

No exemplo, o fabricante indica um valor de referência para cada variável e, entre parênteses, uma faixa bastante ampla com valores máximos e mínimos recomendados. Para cada condição de usinagem é necessário que se estabeleçam os parâmetros mais adequados.

Efetivamente, quando se desenvolve um programa de usinagem em máquinas CNC, os parâmetros são ajustados experimentalmente de acordo com os resultados obtidos, depois da produção de uma grande quantidade de peças, adaptados para cada caso e ao longo do processo, de forma a se obter a melhor relação entre variáveis inversamente proporcionais, como a vida útil da ferramenta e produtividade.⁵

Um indicador confiável do estado da ferramenta (pastilha) é a potência de corte: uma ferramenta nova apresenta uma maior eficiência de corte, demandando uma menor potência mecânica para remoção do material, conforme a ferramenta vai se desgastando sua eficiência de corte diminui, podendo demandar uma maior potência de corte.

Seria de extrema utilidade na indústria, um meio de se obter a potência útil de usinagem instantaneamente ao longo do processo de produção. Esse recurso permitiria uma maior percepção da progressão do desgaste da ferramenta de corte e abreviar a obtenção dos parâmetros mais adequados (velocidade de corte, profundidade de usinagem e avanço da ferramenta de corte) de forma a customizar ao máximo os processos. Seria também um método comparativo eficiente da relação custo x benefício para as diversas opções de modelos e marcas de ferramentas disponíveis.

A maioria das pesquisas efetuadas para determinação da potência de corte durante os processos de usinagem envolvem a utilização de células de carga (transdutores, extensômetros etc.), ou seja, são métodos invasivos que comprometem a normalidade da produção. Durante o processo de pesquisa bibliográfica, não foram encontradas soluções similares a essa proposta de pesquisa.

Este trabalho apresenta o desenvolvimento de um sistema de baixo custo, para determinação e indicação da potência de corte instantânea (em tempo real) mediante o monitoramento da potência elétrica demandada pela máquina.

⁵ Maior vida útil da ferramenta significa produzir o maior número possível de peças com a mesma ferramenta e maior produtividade significa produzir o maior número possível de peças no menor intervalo de tempo possível.

1.1 Objetivo geral

Desenvolver um sistema e metodologia (*software e hardware*) eficientes e de baixo custo, não invasivo (sem comprometer os processos de produção), para a determinação da potência útil de corte instantânea em torno CNC, possibilitando a indicação em tempo real da evolução do desgaste da ferramenta com o processo em curso.

1.2 Objetivos específicos

Ao longo do desenvolvimento do projeto, espera-se comprovar experimentalmente:

- A relação direta entre a potência de corte na usinagem e a potência elétrica demandada pela máquina;
- A validade do método de cálculo da potência de corte por meio da equação de Kienzle;⁶
- Comprovação da relação das diferentes situações de usinagem com a potência de corte, em especial da força específica de corte (K_c) teórica dos materiais e sua proporcionalidade com a dureza real medida;⁷
- Resposta e confiabilidade do sistema de captura e tratamento de sinais (tensões e correntes elétricas) comprovada pela reprodução dos resultados ao longo dos ensaios;

⁶ A equação de Kienzle será tratada com detalhes no tópico 3.3 Cálculo da Potência de Corte teórica.

⁷ A força específica de corte (Kc) será definida e tratada em detalhes, bem como sua relação com a dureza do material, nos tópicos: 3.3 Cálculo da Potência de Corte teórica e 4 Metodologia.

2 REVISÃO BIBLIOGRÁFICA

Durante pesquisas realizadas em bases de trabalhos acadêmicos (Scopus, CAPES e Google Acadêmico), não foram encontrados trabalhos na linha de pesquisa proposta neste trabalho. Utilizando-se as palavras chave em português em pesquisa no Google Acadêmico houve retorno de 459 trabalhos em língua portuguesa, com as keywords foram relacionados aproximadamente 21.200 trabalhos em língua inglesa.

Diversos trabalhos são conceituais e teóricos, como o de Souza (2004) que produziu um estudo abordando a aplicação de sensores (temperatura, vibração, acústico) para monitoramento das condições de usinagem para se obter um prognóstico da vida da ferramenta de corte no torneamento. Dimla (2000) produziu um trabalho teórico, revisando metodologias e sensores para o monitoramento do desgaste de ferramentas nos processos de usinagem.

Outros trabalhos analisam o desgaste de ferramentas na usinagem de diferentes materiais, como Bonifácio e Diniz (1994), Marksberry e Jawahir (2008), Altin *et al* (2007), Attanasio *et al* (2006) e Kurnar *et al* (2006).

Diversos projetos de pesquisa envolvem estudos voltados para a economia de consumo de energia elétrica das máquinas durante os processos de usinagem. Ou seja, são estudos voltados para se obter uma maior eficiência energética, nesta linha de pesquisa estão relacionados os trabalhos de Shaohua *et al* (2012), Ma *et al* (2014), Sarwar *et al* (2009), Li e Kara (2011) e Behrendt *et al* (2012).

Newman *et al* (2012) direcionou seu trabalho em obter um processo mais eficiente por meio do estudo da vida útil e produtividade das ferramentas, de forma a se obter uma maior eficiência energética da máquina (menor consumo de energia). Nos ensaios, foram usinados 4 canais de 230 mm de comprimento em dois blocos de alumínio, com profundidade final de 12 mm e largura (igual ao diâmetro das ferramentas) de 16 mm em alumínio, em fresadora CNC (modelo Dugard Eagle 850 VMC). Cada canal foi usinado com parâmetros diferentes de profundidade de usinagem em cada passada, chamada naquele trabalho de "h", avanço (f) e número de passadas (n), o conjunto de parâmetros foi dividido em duas situações (uma para cada bloco e conjunto de canais) classificadas pelos autores como usinagem leve (Tabela 1) e pesada (Tabela 2) de acordo com a taxa de remoção de material, para cada caso registrou-se a potência demandada (P) e foi calculada a energia consumida por volume removido de material (E), obtendo-se os resultados relacionados na

21

Tabela 1:

1º Bloco - Usinagem leve						
(fuso a 10000 rpm e taxa de remoção de material de 0,48 cm ³ /s)						
Canal	h (mm)	P (kW)	E (kJ/cm³)			
1º	1	1800	12	3,28	6,83	
2º	2	900	6	3,37	7,02	
3⁰	3	600	4	3,42	7,12	
4º	4	450	3	3,48	7,25	

Tabela 1: Consumo de energia na usinagem do 1º Bloco

Fonte: Newman et al (adaptado pelo autor)

2º Bloco - Usinagem pesada						
(fuso a 6000 rpm e taxa de remoção de material de 2 cm³/s)						
Canal	h (mm)	f (mm/min)	n	P (kW)	E (kJ/cm³)	
1º	3	2500	4	3,57	1,78	
2º	4	1875	3	3,85	1,92	
3⁰	6	1250	2	3,94	1,97	
4º	12	625	1	4,09	2,04	

Fonte: Newman *et al* (adaptado pelo autor)

Os autores concluíram que o planejamento adequado dos parâmetros a serem utilizados na usinagem de metais pode resultar em economia significativa de energia elétrica, especialmente quando se aumenta a taxa de remoção de material. A principal relação do trabalho de Newman com esta pesquisa é a captura dos sinais de potência elétrica pela máquina e sua relação com a usinagem. Entretanto, o objetivo deste trabalho é a determinação da potência de corte instantânea, enquanto no trabalho analisado o foco é a racionalização do consumo de energia elétrica. Para isso, o autor propõe o estabelecimento de um modelo matemático que identifique, para cada ferramenta, a taxa de remoção de material ideal.

Avram *et al* (2011) desenvolveu linha de pesquisa semelhante, com a racionalização dos processos ou técnicas alternativas em fresadoras.

Bhushan (2013) demonstrou que com otimização dos parâmetros de corte se obtém, além da minimização do consumo de energia elétrica e prolongamento da vida das ferramentas, ganhos ambientais significativos.

Faleh A. *et al* (2005), determinou o desgaste máximo de brocas de aço-rápido na furação de aço carbono e compósitos (Kevlar, fibra-de-vidro e plásticos reforçados) por meio do monitoramento do consumo diferencial de energia elétrica, variando três parâmetros: diâmetro da broca, velocidade e avanço.

Mannama et al (1989) analisou a dinâmica da potência medida e sinais de

corrente dos motores de fuso e alimentação de um torno CNC e um centro de usinagem para estabelecer a resposta de potência e variações de corrente devido ao desgaste da ferramenta, quebra da ferramenta e vibrações.

Entre os trabalhos realizados no Brasil, há o de Lançoni (2008), que fez um estudo comparativo entre a força de corte na retificação medida com um dinamômetro piezelétrico, montado na mesa da máquina, e as correntes e tensões elétricas medidas tanto na entrada como na saída do inversor de frequência que controla a velocidade do motor que aciona o rebolo. Os sinais das correntes e tensões elétricas foram adquiridos por meio de sensores de efeito Hall e esses sinais, juntamente com os sinais do dinamômetro, foram direcionados a um dispositivo de aquisição de dados (da National Instruments) para conversão de analógico para digital. Esse dispositivo permitiu a aquisição de 4000 amostras por segundo de cada sinal (uma amostra a cada 0,25 ms) que foram tratados com o software LabVIEW⁸ (também da National Instruments). Finalmente, os dados coletados foram processados e analisados no software Matlab.

O autor concluiu que os resultados obtidos mostraram que os sinais de potência elétrica do motor que aciona o rebolo "foram proporcionais aos sinais de força de corte e que é possível substituir o dinamômetro na retificação por sensores de corrente e tensão, com resultados confiáveis". Entre outras comparações, o gráfico da Figura 5 comprova essa afirmação.

Figura 5 – Potências elétrica e mecânica em função da profundidade (LANÇONI, 2008)

23

⁸ National Instruments[™] LabVIEW: segundo a National Instruments, LabVIEW é um software de engenharia criado para aplicações que requerem teste, medição e controle, com rápido acesso ao hardware e a informações obtidas a partir dos dados (disponível em www.ni.com/NI)

A pesquisa de Lançoni, assim como neste trabalho, comprova a relação e proporcionalidade da potência elétrica da máquina com a força de corte no processo de usinagem. Entretanto, diferentemente da metodologia aqui desenvolvida, Lançoni não estabelece uma equação de conversão da potência elétrica medida em potência ou força de corte na usinagem.

Devido as grandezas envolvidas na retificação, em que a força radial é muito grande em relação à tangencial é um processo desfavorável para a comparação e determinação de uma proporcionalidade entre a potência elétrica e a força de corte.

3 FUNDAMENTAÇÃO TEÓRICA

Os principais fundamentos teóricos que embasaram este trabalho foram:

- Fluxo de Energia em Sistemas;
- Potência Elétrica em um Sistema Trifásico;
- Cálculo da Potência de Corte Teórica.

3.1 Fluxo de Energia em Sistemas

De acordo com Boylestad (2014) p. 93, a quantidade de energia na saída de um sistema é sempre menor do que a que entrou, devido às perdas e/ou energia armazenada pelo próprio sistema, conforme esquematizado na Figura 6. A melhor situação que se pode esperar é que os valores absolutos de W_{out} e W_{in} sejam relativamente próximos um do outro.

Figura 6 – Fluxo de energia em um sistema (BOYLESTAD, 2014)

Neste trabalho, relacionando com o torno a CNC, sistema é o conjunto compreendido entre a entrada da alimentação dos módulos de controle da máquina, passando pelos cabos, servo-motores, elementos de transmissão mecânica, etc. até a ponta da ferramenta (pastilha de metal duro) que remove o material da peça em usinagem.

3.2 Potência Elétrica em um Sistema Trifásico

De acordo com Boylestad R. L. (2014) p.850-851, a potência fornecida a um circuito trifásico de três fios conectado em Y ou Δ , equilibrado ou não, pode ser medida com apenas dois wattímetros se eles forem conectados adequadamente ao circuito e as leituras forem interpretadas de maneira correta, conforme mostrado na Figura 7.

Figura 7 – Método dos dois wattímetros aplicado à carga conectada em Δ ou Y (BOYLESTAD, 2014)

Neste estudo, cada wattímetro foi substituído por 1 sensor de corrente e um sensor de tensão. De acordo com Boylestad (2014) p.851 (Figura 8), a potência total é obtida pela soma (fator de potência > 0,5) ou subtração (fator de potência < 0,5) das potências parciais.

Figura 8 – Verificação se as potências parciais devem ser somadas ou subtraídas (BOYLESTAD, 2014) em que $P_{\rm T}$ é a potência total, P é o módulo da potência parcial menor e $P_{\rm h}$ é o módulo da potência parcial men

A curva mostrada na Figura 8 é um gráfico do fator de potência da carga em função da razão P_1 / P_h , em que P_1 e P_h são os módulos da menor (*lower*) e da maior (*higher*) leitura dos wattímetros, respectivamente. Para um fator de potência (adiantado ou atrasado) maior que 0,5 a razão é positiva. Isso indica que as leituras dos dois wattímetros são positivas e a potência total é a soma das leituras dos dois wattímetros; ou seja, $P_T = P_1 + P_h$. Quando o fator de potência é menor do que 0,5 (adiantado ou atrasado), a razão é negativa. Isso quer dizer que uma das leituras é negativa e que a potência total é a diferença entre as duas leituras, conforme a Equação 1:

$$\boldsymbol{P}_T = \boldsymbol{P}_h - \boldsymbol{P}_l \qquad (1)$$

Neste trabalho, a potência elétrica medida alimenta os três servomotores responsáveis pelo movimento do eixo árvore, eixo de deslocamento longitudinal e eixo de deslocamento transversal da ferramenta. Os servomotores se caracterizam por apresentarem um fator de potência sempre superior a 0,5 (50 %) conforme a Figura 9, que mostra a placa do servomotor Siemens da máquina, que indica os fatores de potência (cos φ) se situam entre 0,79 e 0,80, de acordo com a alimentação. Desta forma, a potência total é a soma das duas potências medidas.

Figura 9 – Foto da placa de um dos servomotores da máquina (Autor)

3.3 Cálculo da Potência de Corte Teórica

Neste tópico, é abordada a metodologia para cálculo da Potência de Corte Teórica. Neste trabalho, este parâmetro será relacionado com a variação da demanda de Potência Elétrica pela máquina.

3.3.1 Área da seção de usinagem (A)

Numa operação de torneamento, a área da seção de corte está representada na Figura 10.

Figura 10 – Seção de usinagem no torneamento (INGA)

A área da seção de usinagem (A), pode ser calculada pela Equação 2.

$$\boldsymbol{A} = \boldsymbol{f}_n \boldsymbol{.} \boldsymbol{a}_p \qquad (2)$$

Em que:

A =área da seção de usinagem em mm²; $f_n =$ avanço da ferramenta em mm/rot; $a_p =$ profundidade de usinagem em mm.

3.3.2 Força de Corte Teórica (*F*_c)

Segundo Fracaro (2013), a metodologia mais utilizada para a determinação da Força de Corte Teórica é a equação de Kienzle, expressa na Equação 3.

$$\boldsymbol{F_{C}} = \boldsymbol{k_{c}} \cdot \boldsymbol{A} \qquad (3)$$

Em que: F_c = Força teórica de corte em N; k_c = Força específica de corte em N/mm²; A = área da seção de usinagem em mm².

A força específica de corte (k_c), também denominada por alguns autores como pressão específica de corte, é um coeficiente determinado experimentalmente, para os diferentes materiais. Segundo Machado (2009), essa equação tem fornecido valores mais próximos dos experimentados para a maioria dos materiais metálicos usinados.

Quando acompanhada de um índice, indica o avanço e profundidade de usinagem utilizados. Por exemplo, $k_{c1.1}$ é a força específica de corte para um avanço de 1 mm/rot e profundidade de usinagem de 1 mm.

3.3.3 Velocidade de Corte (*v_c*)

Por definição, velocidade de corte é a velocidade tangencial com que a ferramenta (pastilha) percorre o material durante o processo de usinagem, no caso das operações de torneamento, o diâmetro resultante da operação. Assim, neste caso, a velocidade de corte pode ser calculada pela Equação 4.

$$\mathbf{v}_c = \underline{\pi \cdot d}_{1000} \cdot \mathbf{n} \tag{4}$$

Em que:

 v_c = velocidade de corte em m/min;

d = diâmetro torneado em mm;

n = velocidade angular do eixo árvore (peça/material) em rotações por minuto (rpm).

3.3.4 Potência de Corte Teórica (Pc)

De acordo com Fracaro (2013), a Potência de Corte teórica é determinada pelo produto da velocidade de corte (v_c) pela força de corte teórica (F_c). Assim, tem-se a Equação 5:

$$P_c = \underline{v_c \cdot F_c} \tag{5}$$

Em que:

 P_c = potência de corte em W; v_c = velocidade de corte em m/min; F_c = Força teórica de corte em N.

Usualmente, como no manual da Sandvik (2015), a equação para cálculo da Potência de Corte Teórica também pode ser apresentada conforme a Equação 6.

$$P_{c} = \frac{v_{c} \cdot a_{p} \cdot f_{n} \cdot k_{c}}{60 \cdot 1000}$$
(6)

Em que:

 P_c = potência de corte em W;

 v_c = velocidade de corte em m/min;

 a_p = profundidade de usinagem em mm;

 f_n = avanço da ferramenta em mm/rot;

 k_c = Força específica de corte em N/mm²;

4 METODOLOGIA

4.1 Introdução

Considerando duas situações no processo de usinagem, em tornos, conforme ilustrado na Figura 11, tem-se:

Figura 11 – Ferramenta avança em vazio (a direita) e em usinagem (a esquerda) (Autor)

- Em vazio, a ferramenta avança em direção à peça enquanto o eixo árvore gira juntamente com a peça. Neste caso, a potência de corte é nula (*P_c* = 0), pois a ferramenta não está em contato com a peça girante e, consequentemente, não está removendo material. Por outro lado, a potência demandada pela máquina (*P_{e0}*), é a necessária para o movimento de avanço da ferramenta, rotação da peça, e demais sistemas (refrigeração, circulação de óleo, ventilação, etc.);
- Em usinagem, a ferramenta continua avançando, mas neste caso, removendo material. Nesta situação, há uma potência de corte (*P_c*), teoricamente determinável por meio da Equação 5. A potência elétrica efetiva (*P_{ef}*) demandada neste instante corresponderá à soma da potência elétrica em vazio (*P_{e0}*) com o produto da potência de corte (*P_c*) por um fator de rendimento do sistema (η), que será uma constante (maior que um), representando as perdas correspondentes ao rendimento do sistema, conforme o conceito de Boylestad (2014).

Desta forma, traduzindo esse postulado para uma expressão matemática para a determinação da Potência Elétrica Efetiva, tem-se a Equação 7.

$$\boldsymbol{P}_{ef} = \boldsymbol{P}_{e0} + \boldsymbol{P}_c \quad \boldsymbol{.} \quad \boldsymbol{(7)}$$

Em que:

 P_{ef} = potência elétrica efetiva demandada pela máquina durante a usinagem; P_{e0} = potência elétrica demandada pela máquina durante avanço em vazio; P_c = potência de corte teórica calculada por meio da equação 5; η = fator de rendimento do sistema.

Relacionando a Equação 7 ao demonstrado por Boylestad (2014) e exemplificado na Figura 6 (pag. 25) e Equação 1 deste trabalho, P_{ef} é a energia que entra no sistema e P_c é a energia que sai do sistema, e η é o fator referente à perda de energia que ocorre no processo.

Posteriormente, após uma análise aprofundada dos resultados obtidos com a realização de ensaios com diversos materiais, em diferentes condições de usinagem, concluiu-se que a Equação 8 se mostrou mais adequada para a representação das relações envolvidas no processo.

 $P_{\rm ef} = P_{\rm e}(n) + P_{\rm c} + \Delta P(P_{\rm c}) \tag{8}$

Em que:

 P_{ef} = potência elétrica efetiva demandada pela máquina durante a usinagem; $P_{e}(n)$ = potência elétrica demandada pela máquina durante avanço em vazio em função da velocidade angular do eixo árvore;

 P_c = potência de corte teórica calculada por meio da equação 5;

 $\Delta P(P_c)$ = diferença de potência em função da Potência de corte teórica.

4.2 Máquina, ferramentas e materiais utilizados

Os estudos foram planejados, desenvolvidos e implementados em três etapas em situações e objetivos distintos:

- Primeira etapa: desenvolvimento da metodologia e sistema de aquisição e tratamento de sinais;
- Segunda etapa: aplicação do sistema desenvolvido, visando a determinação da equação de conversão para relacionar a diferença de demanda de potência pela máquina com a potência de corte efetiva;

 Terceira etapa: comprovação da eficiência da metodologia e sistema desenvolvidos em situação real de usinagem de peças em produção.

A primeira etapa foi implementada em um torno da marca ROMI modelo Centur 30D com Comando Numérico Computadorizado Siemens 802D (Figura 12).

Figura 12 – Torno marca Romi modelo Centur 30D com CNC Siemens 802D (Autor)

A máquina foi utilizada porque pertence a uma empresa que propiciou livre acesso ao equipamento.

Posteriormente, numa segunda etapa, visando validar o sistema e metodologia em outro equipamento, os ensaios foram estendidos e implementados em um torno da marca ERGOMAT modelo TND 200 equipado com Comando Numérico Computadorizado Fanuc (Figura 13), pertencente ao Departamento de Mecânica do IFSP – Campus São Paulo.

Figura 13 – Torno Ergomat modelo TND-200 com CNC Fanuc (Autor)

Para usinagem foram utilizadas pastilhas Sandvik DNMG 110408 GC2015⁹ (Anexo 1) montadas em suporte Sandvick PDJNR 2525M 11 (Anexo 2). Os motivos desta escolha se deveram a:

- Disponibilidade;
- Sua grande utilização na indústria;
- Conjunto versátil, podendo ser aplicado em operações de desbaste ou acabamento;
- Conjunto utilizado na usinagem da peça em situação real de produção, que validou metodologia e sistema desenvolvidos.

Os materiais utilizados nos ensaios de usinagem da primeira etapa foram escolhidos levando-se em conta, principalmente, sua grande aplicação em construção mecânica de máquinas e dispositivos, além da disponibilidade em barras de mesmo diâmetro, de forma a se padronizar os programas elaborados com os mesmos parâmetros de usinagem, possibilitando uma análise comparativa de resultados obtidos nas mesmas condições. Assim, os experimentos da primeira etapa foram feitos com os seguintes materiais:

- Alumínio liga ABNT 6351T6 em barras redondas de diâmetro 1.1/4" (31,75 mm);
- Aço carbono SAE 1020 em barras redondas de diâmetro 1.1/4" (31,75 mm);

Na segunda etapa, após uma compreensão e aprimoramento da metodologia e resultados, foram utilizados nos ensaios os materiais:

- Alumínio liga ABNT 6351T6 em barras redondas de diâmetro 1.1/2" (38,1 mm);
- Aço inoxidável liga AISI 304 em barras redondas de diâmetro 1.1/4" (31,75 mm);
- Aço Ferramenta SAE P20 em barras redondas de diâmetro 1.1/4" (31,75 mm);
- Bronze alumínio UNS C63000 em barras redondas de diâmetro 1" (25,4 mm).

Esses materiais foram utilizados somente na segunda etapa, em razão de uma menor disponibilidade e custo mais elevado. O bronze alumínio UNS C63000, material utilizado, por exemplo, em trens de pouso de aeronaves (por isso também conhecido como bronze aeronáutico) foi gentilmente cedido para essas pesquisas pela Termomecânica¹⁰.

 $^{^9}$ De acordo com Sandvik (2009) p. A-73, as pastilhas classe GC2015, possuem "revestimento de 5,5 μm , com várias camadas de TiN, Al₂O₃ e Ti (C,N).

¹⁰ Termomecânica Ltda.: empresa do setor de transformação de materiais não ferrosos (cobre e suas ligas) localizada em São Bernardo do Campo/SP.

Como são materiais de grande utilização na indústria, suas características, como a Força Especifica de Corte (K_c), são bem conhecidas. Neste trabalho consideraram-se os parâmetros conforme tabelas reproduzidas no Anexo 3, uma breve análise revela uma proporção entre esse parâmetro e a dureza dos diversos materiais.

Visando uma comparação entre os dados teóricos obtidos para os materiais a serem submetidos aos ensaios e sua real condição, foram medidas as durezas, em equipamento apropriado, em diferentes pontos dos materiais, para verificação de possíveis diferenças entre a parte externa e a interna dos materiais, conforme a Figura 14.

Figura 14 – Corpos de prova dos materiais para medição da dureza (Autor)

O quadro comparativo da Tabela 3 mostra os resultados teóricos e experimentais obtidos. Como a dureza medida foi muito próxima a teórica, deduz-se que as forças específicas de corte tabeladas são válidas.

Tabela 3 – Quadro com os parâmetros característicos dos materiais					
Material	Kc (N/mm²)	Dureza teórica (HB)	Dureza medida (HB)		
Alumínio ABNT 6351T6	800	100	100		
Aço SAE 1010/20	2000	125	130		
Aço inoxidável AISI 304	2300	180	185		
Aço Ferramenta SAE P20	2500	200	220		
Bronze alumínio UNS C63000	1700	100	100		

Fontes: Sandivik e Autor

4.3 Ensaios (operações) de Usinagem

Na primeira e segunda etapa de usinagem, os ensaios foram realizados com percursos longitudinais sucessivos de 40 mm (passadas), sendo 20 mm em vazio e 20 mm em usinagem, conforme desenho esquemático da Figura 15.

Deve-se considerar que os resultados obtidos no primeira passada não são totalmente confiáveis, em razão das seguintes situações:

- A operação de usinagem, a partir do diâmetro inicial da barra, em bruto, apresenta uma variável adicional que é imprecisão dimensional, acarretando uma variação da profundidade de usinagem;
- A fixação do material na placa do torno poderá apresentar uma excentricidade tornando a profundidade de usinagem inconstante;
- Durante o processo de laminação da barra, devido aos esforços de compressão, a parte mais externa do material poderá apresentar características diversas da parte interna.

4.3.1 Primeira etapa de ensaios

Para permitir uma melhor comparação dos resultados (diferença da demanda de potência elétrica pela máquina), os ensaios foram planejados com o menor número
de variáveis possíveis. Assim, o programa de usinagem para a primeira etapa, detalhado no Apêndice A, foi desenvolvido com a fixação dos seguintes parâmetros:

- Velocidade de corte (v_c) = 150 m/min;
- Profundidade de usinagem $(a_p) = 2,5$ mm (a partir da segunda passada);
- Avanço de corte $(f_n) = 0.4$ mm/rot;
- Velocidade máxima do eixo árvore (placa) = 3000 rpm.

Mesmo com a utilização de diferentes materiais, os parâmetros de usinagem foram fixados de forma a possibilitar a comparação dos resultados obtidos para os valores de potências de corte.

As condições de usinagem (torneamento) em cada passada estão detalhadas na Tabela 4. Pode-se observar que, até a terceira passada, a máguina mantém a velocidade de corte constante, por meio do aumento da velocidade de rotação da placa conforme o diâmetro de usinagem vai diminuindo, da quarta a sexta passada, atinge-se a velocidade máxima do fuso (3000 rpm) e esta é mantida constante, acarretando uma variação da velocidade de corte, conforme com a Equação 4.

Operação	Diâmetro antes D (mm)	Diâmetro depois d (mm)	Profund. de usinagem a _p (mm)	Velocid. de corte v _c (m/min)	Velocid. Placa (rpm)
1ª passada	31,8	30	0,9	150	1292
2ª passada	30	25	2,5	150	1910
3ª passada	25	20	2,5	150	2390
4ª passada	20	15	2,5	141	3000
5ª passada	15	10	2,5	94	3000
6ª passada	10	5	2,5	47	3000

Tabela 4 – Parâmetros de Usinagem nos ensaios da primeira etapa (Autor)

Aplicando-se a Equação de Kienzle (Equação 5), foi possível determinar a Potência Teórica de corte em cada passada para os diferentes materiais. Os resultados são apresentados na Tabela 5.

Tabela 5 – Potências Teóricas de Corte em watts (Autor)											
Operação	Alumínio ABNT 6351 T6	Aço SAE 1010/20	Aço Inox AISI 304								
1ª passada (torneamento)	720	1800	2070								
2ª passada (torneamento)	2000	5000	5750								
3ª passada (torneamento)	2000	5000	5750								
4ª passada (torneamento)	1880	4700	5410								
5ª passada (torneamento)	1250	3130	3610								
6ª passada (torneamento)	630	1570	1800								

4.3.2 Segunda etapa de ensaios

Na segunda etapa de ensaios, visando se obter um número de amostragem de dados maior (o dobro) em cada ensaio, a velocidade de avanço foi reduzida para 0,1 mm/rot, que também é um valor mais comum para esse parâmetro em operações de usinagem. Também foi alterado o programa, de forma a inserir uma passada adicional, por se utilizar barras de alumínio de diâmetro maior (1.1/2" ao invés de 1.1/4"). Em razão da maior velocidade de rotação disponível no eixo árvore do torno Ergomat, a velocidade máxima foi programada para 5000 rpm. Assim, foi possível a manutenção da velocidade de corte programada até a sexta passada do total de sete. As condições estão detalhadas na Tabela 6.

Operação	Diâmetro antes D (mm)	Diâmetro depois d (mm)	Profund. de usinagem a _p (mm)	Velocid. de corte v _c (m/min)	Velocid. Placa (rpm)
1ª passada	38,1	35	1,5	150	1363
2ª passada	35	30	2,5	150	1590
3ª passada	30	25	2,5	150	1910
4 ^a passada	25	20	2,5	150	2390
5ª passada	20	15	2,5	150	3180
6ª passada	15	10	2,5	150	4770
7ª passada	10	5	2,5	78	5000

Tabela 6 – Parâmetros de Usinagem nos ensaios da segunda etapa (Autor)

Usando o mesmo procedimento da etapa anterior, foram calculadas as potências teóricas para cada material/condição de usinagem, conforme apresentado na Tabela 7.

Operação	Alumínio ABNT 6351 T6	Aço SAE P20	Aço Inox AISI 304	Bronze UNS C63000
1ª passada (torneamento)	310	-	-	-
2ª passada (torneamento)	500	560	520	-
3ª passada (torneamento)	500	1560	1440	-
4ª passada (torneamento)	500	1560	1440	1060
5ª passada (torneamento)	500	1560	1440	1060
6ª passada (torneamento)	500	1560	1440	1060
7ª passada (torneamento)	263	820	760	820

Tabala 7 Datânaiga Taárigan da Carta a -----

Obs.- Valores arredondados na casa das dezenas

4.3.3 Terceira etapa de ensaios

Na etapa final, foram testados e validados a metodologia e sistema em condições reais de produção na máquina. Para isso, foi produzido um lote de peças em aço inoxidável AISI 304, conforme detalhado na Figura 16, partindo de uma pastilha nova e utilizada no processo de usinagem até seu desgaste, determinado por análise visual do acabamento superficial das peças e arestas de corte da ferramenta.

Figura 16 – Pino em aço inoxidável AISI 304 (Autor)

4.4 Captura e tratamento dos sinais

Visando eliminar erros causados pela variação da demanda de potência por outros sistemas da máquina (bombeamento de refrigerante de corte, bombeamento de óleo lubrificante, iluminação, sistema de ventilação, etc.) a captura dos sinais foi efetuada na entrada da alimentação trifásica dos módulos controladores dos servomotores (Figura 17).

Os sinais de corrente elétrica foram adquiridos por meio de dois sensores de corrente modelo SCT-013-000 (ficha técnica apresentada no Anexo 4 e esquema de ligações no Anexo 5), conforme mostrado na Figura 18.

Os sinais de tensão entre as fases foram adquiridos por meio de três cabos com terminais tipo "jacaré" do lado conectado aos terminais de ligação da alimentação dos módulos, e conectores tipo "pino banana" nas outras extremidades. Uma medição preliminar (com uso de alicate amperímetro) entre as fases de alimentação dos módulos indicou tensões da ordem de 280 V.

Figura 17 – Módulos controladores (Autor)

Figura 18 – Sensores de corrente (Autor)

Para aquisição, processamento e registro dos sinais de tensões e correntes, foi utilizada uma plataforma baseada em placa Arduíno Uno com processador ATmega328 com memória flash de 32 KB e resolução de 10 bits (EVANS *et al*, 2013), conforme ilustrado na Figura 19. Essa escolha se deu em razão da disponibilidade, simplicidade e software compilador (IDE) aberto.

Figura 19 – Placa Arduíno Uno (https://www.arduino.cc/en/Main/ArduinoBoardUno em 15/11/2016)

Como as entradas analógicas da placa Arduino não suportam tensões acima de 5 VCC, foi necessário agregar um circuito adequado, projetado e construído para condicionar os sinais de forma a reduzir e retificar as tensões e tratar os valores das correntes capturadas dos sensores, conforme detalhado no esquema apresentado no Apêndice B. O conjunto (circuito desenvolvido e a placa Arduino Uno) está ilustrado na Figura 20.

Figura 20 – Dispositivo de aquisição, condicionamento e tratamento dos sinais (Autor).

A placa Arduino possui uma saída serial (canto inferior direito da figura), que possibilita o envio dos dados obtidos para um microcomputador (via entrada USB) de forma que se possa observar, registrar e, eventualmente, efetuar algum tratamento adicional.

Para calibração dos sinais de tensões e correntes, foram desenvolvidos dois programas para capturar os valores básicos de tensões e correntes recebidos nas entradas analógicas do Arduino, compará-los com valores conhecidos (medidos) e ajustá-los por meio de operações (equações) para se obter valores finais em unidades do Sistema Internacional (volts, ampères e watts).

Para calibração das tensões, utilizou-se um transformador com 6 "tapes" de saída (tensões diferentes). Para calibração das correntes, utilizaram-se diferentes equipamentos que foram submetidos a diferentes correntes medidas com alicate amperímetro.

O código desenvolvido para calibração das tensões pode ser consultado no Apêndice C. Os valores capturados (valores básicos lidos nas entradas analógicas do Arduino) foram comparados com os valores medidos para as respectivas tensões.

Os valores médios obtidos na calibração das tensões estão resumidos na Tabela 8. Resultados mais completos estão expressos no Apêndice E. A partir dos valores básicos capturados e lidos, foi feita a confrontação com os valores correspondentes medidos com um multímetro, obtendo-se, com auxílio do Microsoft Excel, duas equações de calibração para os valores das tensões, com dois trechos lineares com diferentes inclinações, a primeira equação mostrada no gráfico da Figura 21 (em fundo azul), para valores lidos menores ou iguais a 345 e a segunda equação mostrada no gráfico da Figura 22 (em fundo verde), para valores lidos maiores que 345.

Essas equações foram utilizadas no programa desenvolvido, conforme mostrado no Apêndice F, para conversão dos valores lidos dos sinais de tensão para volts.

Tabela 8 – Valores capturados (lidos) e medidos das Tensões (Autor)

e Figura 21 – Primeiro gráfico e equação para calibração da Tensão (Autor)

Para calibração da corrente elétrica, sendo esta alternada, foi necessário considerar que o valor lido em um dado instante não necessariamente seria correspondente ao valor da corrente eficaz naquele ponto da leitura. A curva de uma corrente alternada ao longo do tempo corresponde a uma senóide, conforme ilustrado na Figura 23.

Figura 23 – Curva (senóide) característica da corrente alternada. Fonte: http://eletricaesuasduvidas.blogspot.com.br – acessado em junho/2017

Ao capturar diretamente os valores de uma corrente elétrica alternada por meio de um sensor de corrente, haverá uma incerteza com relação de qual fase instantânea foi adquirida a amostra, no caso da rede elétrica (frequência de 60 Hz) haverá 60 ciclos de onda a cada segundo. Desta forma, o valor lido estará entre o máximo positivo (ponto a) e o máximo negativo (ponto c) no gráfico da Figura 23.

Existe uma biblioteca desenvolvida para o Arduino que calcula, após uma sequência de ciclos (ajustável) e um valor de calibração (também ajustável), o valor da corrente eficaz ou rms (root-mean-square). A biblioteca "Emonlib.h" está disponibilizada no site da Open Energy Monitor (https://openenergymonitor.org).

Desta forma, foi desenvolvido um código para determinação do valor de calibração mais apropriado para ajuste em função das correntes medidas com um alicate amperímetro, conforme Apêndice D. Os valores obtidos estão detalhados na Tabela 9.

Tabela 9	a 9 – Calibração dos Sensores de Corrente (Autor)												
Corrente	Valores	lidos (A)	Valor calibração										
Medida (A)	Sensor 1	Sensor 2	Entrada 1	Entrada 2									
0,0	0,0	0,0	42	42									
7,1	7,17	7,37	41	42									
7,1	7,33	7,34	41	41									
8,7	8,40	8,40	41	41									
8,7	8,69	8,70	42	42									

O I'l ---- de Corrente (Au

Com base nos dados obtidos, foi determinado o valor de calibração igual a 42, que é um número inteiro a ser inserido no código do Arduino para uso da biblioteca "Emonlib.h" que possibilita a conversão e obtenção dos valores de correntes elétricas rms, a partir dos valores lidos. A posição de inserção deste valor de calibração, bem como os demais parâmetros variáveis são comentados no programa detalhado no Apêndice D.

Determinados os parâmetros de calibração, foi elaborado um código único para aquisição e tratamento dos sinais de tensões e correntes elétricas e cálculo das potências, detalhado no Apêndice F. Após os primeiros ensaios de usinagem, observou-se que esse código possibilitava uma taxa de captura da ordem de uma leitura a cada 200 ms, o que não se mostrou adequado pois, de acordo com os ensaios detalhados no Tópico 4.3, o tempo máximo em usinagem em cada passada é da ordem de 1500 ms, o que permitiria a captura de menos de 8 leituras por passada.

Como, durante os ensaios iniciais, observou-se que as tensões elétricas se mantinham praticamente constantes, em torno de 288 V, foi desenvolvido um código mais simples, conforme detalhado no Apêndice G, para captura somente dos valores das correntes elétricas, com os cálculos das potências sendo feitos posteriormente, em planilha Microsoft Excel. Essa solução possibilitou um aumento da taxa de captura para uma leitura a cada 100 ms.

Um ganho adicional foi conseguido com o uso da ferramenta de software "Termite 3.2", que substitui o monitor serial do Arduino. O ambiente de configuração e recepção do aplicativo está ilustrado na Figura 24. Com essa ferramenta, obteve-se uma taxa de amostragem da ordem de uma leitura a cada 60 ms, o que se mostrou adequado para essa primeira fase de ensaios.

🔚 Termite 3.2 (by CompuPhase)	-		
COM3 9600 bps, 7N1, no handshak	e Settings Clear A	About Close	
2.21 1.74 14169		^	
1.99 1.45 14235	📕 🚾 Termite 3.2 (by CompuPi	nase)	– – ×
1.83 2.21 14366			`
2.20 6.88 14433	Serial port settings		
1.89 2.60 14498	Port configuration	Transmitted text	Options
1.38 2.92 14630	Port COM3 ~	O Append nothing	Stay on top
3.25 3.32 14696 1.62 3.56 14761	Baud rate 9600 🗸	Append CR Append LF	Quit on Escape
3.08 7.84 14827	Data bits 8 🗸	O Append CR-LF	Keep history
4.40 9.33 14894 3.15 10.00 14959	Stop bits 1 V	✓ Local echo	Close port when inactive
3.25 7.40 15025	Parity none V	Received text	Plug-ins
2.43 8.19 15090	Flaw sectral page 24	Polling 100 ms	Auto Reply Function Keys
	Flow control none ~	Fonc monospaced V	Hex View
	Forward none ~		🗌 Highlight 🗸 🗸
	User interface language	English (en) \checkmark	Cancel OK

Figura 24 – Termite e seu ambiente de configuração e recepção de sinais (Autor)

5 RESULTADOS

A apresentação dos resultados a seguir foi distribuída de acordo com as respectivas etapas dos ensaios.

5.1 Resultados da primeira etapa dos ensaios

Na primeira etapa, foram realizados 26 ensaios com a ferramenta composta de pastilhas Sandvick DNMG 110408 CG2015 (Anexo 1) montadas em suporte Sandvik PDJNR 2525M 11 (Anexo 2). Os ensaios foram divididos da seguinte forma:

- 5 ensaios com avanço em vazio para se determinar a potência demandada com potência de corte igual a zero (sem usinagem);
- 4 ensaios com pastilha nova usinando alumínio ABNT 6351T6;
- 5 ensaios com pastilha gasta usinando alumínio ABNT 6351T6;
- 6 ensaios com pastilha nova usinando aço SAE 1010/20;
- 6 ensaios com pastilha gasta usinando aço SAE 1020/20.

As médias dos resultados obtidos, em cada condição de usinagem, estão detalhados na Tabela 10, os valores máximos em cada ensaio estão detalhados no Apêndice H e resultados mais completos podem ser consultados no Apêndice I.

Na tabela apresentada, nos casos dos ensaios com pastilhas gastas, o valor da Potência de Corte Teórica é seguido de um sinal "+" pois, neste caso, espera-se um valor maior, devido à perda de eficiência da pastilha, pelo pressuposto já mencionado anteriormente.

A Potência Elétrica Medida (Pe) foi obtida, para cada situação, com a captura dos sinais de corrente e tensão na entrada dos módulos de alimentação dos servomotores da máquina. A Potência de Corte Teórica foi a calculada conforme já apresentado na Tabela 5 (pág, 37).

	med	Compa didas r	araçã nos av	o das vanços	Média s com	as das 1 as Po	Potê otênci	ncias I as de	Elétrio Corte	cas Má teóric	ixima as (w	s atts)	
Condição do Ensaio	1º Pa (1292	ssada 2 rpm)	2º Pa (1910	ssada) rpm)	3º Pa (239)	issada 0 rpm)	4º Pa (3000	issada) rpm)	5º Pa (3000	ssada) rpm)	6º Passada (3000 rpm)		
	Ре	Рс	Ре	Рс	Ре	Рс	Ре	Рс	Ре	Рс	Ре	Рс	
Avanço em Vazio	2301	0	2752	0	3498	0	4052	0	3710	0	3647	0	
Alumínio pastilha nova	2499	720	4193	2000	5657	5657 2000		6288 1880		1250	4657	630	
Alumínio pastilha gasta	2802	720+	4464	2000+	4801	2000+	5072	1880+	5233	1250+	5069	630+	
Aço pastilha nova	3405	1800	8138	5000	8710	5000	8825	4700	7938	3130	6456	1570	
Aço pastilha gasta	4750	1800+	8663	5000+	9629	9629 5000+		9541 4700+		3130+	6639	1570+	
	Pe	= Potêr	ncia Ele	étrica M	edida	/ Pc =	Potêno	cia de C	orte T	eórica			

Tabela 10 – Resumo dos Resultados dos Ensaios de Usinagem da 1ª etapa (Autor)

5.1.1 Análise dos Resultados

Tomando as diferenças das potências elétricas medidas em usinagem com as potências elétricas medidas com os respectivos avanços em vazio, obtém-se uma estimativa da potência de corte efetiva (sem considerar as eventuais perdas de rendimento, na transmissão do sistema). A Tabela 11 e o Gráfico da Figura 25 (página 48) apresentam a comparação entre as potências de corte obtidas e as calculadas teoricamente.

Apesar de alguns resultados apresentarem desvios significativos em relação à Potência de Usinagem Teórica, constata-se que, na maior parte dos casos (resultados com fundo verde), a variação de demanda de potência elétrica medida (determinada pela metodologia desenvolvida) foi sensível às diferentes condições de usinagem acompanhando, de forma geral, o comportamento esperado teoricamente, sem se esperar uma grande precisão em relação ao calculado teoricamente. Somente sete resultados (fundo vermelho), de um total de 24, revelaram valores menores em relação aos resultados esperados, destes, três são relacionados a primeira passada, com desvios já previstos conforme abordado no tópico 4.3 deste trabalho. Resultados com

valores acima dos esperados podem ser atribuídos às perdas de rendimento entre a potência elétrica tomada na alimentação dos módulos controladores dos servomotores e a potência efetiva de usinagem, conforme já previsto na Equação 7, e não consideradas nesta fase pois sua estimativa demandaria um número maior de ensaios de usinagem.

Condição	Con	nparati cor	ivo da n as ı	as dife respec	rença tivas	is de P Potên (em v	Potêno cias o watts)	cias El de Cor	étrica te teó	is med pricas (lidas (P _c)	(ΔP _e)	
do Ensaio	1º Pa (1292	ssada 2 rpm)	2º Pa (1910	ssada) rpm)	3º Pa (2390	ssada) rpm)	4º Pa (3000	ssada) rpm)	5º Pa (3000	ssada) rpm)	6º Passada (3000 rpm)		
	ΔPe obtida	Pc teórica	ΔPe obtida	Pc teórica	ΔPe obtida	Pc teórica	ΔPe obtida	Pc teórica	∆Pe obtida	Pc teórica	ΔPe obtida	Pc teórica	
Alumínio pastilha nova	198	720	1441	2000	2159	2000	2236	1880	1511	1250	1010	630	
Alumínio pastilha gasta	501	720+	1712	2000+	1303	2000+	1020	1880+	1523	1250+	1422	630+	
Aço pastilha nova	1104	1800	5386	5000	5212	5000	4773	4700	4228	3130	2809	1570	
Aço pastilha gasta	2449	1800+	5911	5000+	6131	5000+	5489	4700+	5149	3130+	2992	1570+	

Tabela 11 – Quadro comparativo entre as Potências de corte obtidas e as teóricas (Autor)

Figura 25 – Gráfico comparativo das Potências Elétricas medidas com as Potências de Corte teóricas

5.1.2 Conclusões da primeira etapa dos ensaios

A metodologia e sistema desenvolvido se mostrou eficaz, no sentido de comprovar uma correspondência entre a Variação da Demanda de Potência Elétrica pela máquina e a Potência de Corte Efetiva no processo de usinagem em torno CNC. A variação de demanda de potência elétrica pela máquina aumentou na usinagem de alumínio (material de boa usinabilidade) em relação ao estado de avanços em vazios constatando-se novo aumento quando em usinagem de aço (material de usinagem mais severa em relação ao alumínio). Os resultados obtidos validaram a metodologia de cálculo da Potência de Corte Teórica por meio da Equação de Kienzle e a Pressão Específica de Corte (Ks) atribuída aos materiais utilizados.

A análise dos resultados da primeira etapa de ensaios foi útil também para direcionar a pesquisa no sentido dos seguintes procedimentos para a segunda etapa dos ensaios:

- Utilização de mais materiais com características de usinabilidade diferentes;
- Proceder um maior número de ensaios;
- Verificar se há alguma defasagem da corrente elétrica medida entre os valores capturados na linha 1 e linha 2 da alimentação trifásica dos módulos controladores dos servomotores, a ser considerada para cálculo da potência elétrica;
- Com o maior número de resultados obtidos, estabelecer a equação que determina a relação entre a potência elétrica medida e a potência de corte instantânea no processo de usinagem em curso.

5.2 Segunda etapa dos ensaios

Nesta etapa, após o aperfeiçoamento da metodologia e do sistema, se buscou obter a equação de conversão da demanda de potência elétrica pela máquina em potência de corte instantânea.

5.2.1 Paridade dos valores das correntes medidas

Uma questão surgida após a primeira etapa dos ensaios foi com relação a uma possível defasagem entre as correntes medidas nas duas linhas de alimentação, que poderia comprometer os valores obtidos, caso essa defasagem não fosse determinada e considerada no processamento para obtenção das Potências Elétricas, haja vista que essas potências representam as somas das potências parciais das linhas 1 e 2, obtidas por meio das respectivas correntes elétricas medidas pelo sistema.

Desta forma, com os primeiros resultados obtidos nos ensaios de usinagem da segunda etapa, isso foi verificado. Conforme mostrado no gráfico da Figura 26, as faixas de picos de correntes elétricas numeradas de 1 a 10, não há defasagem entre as correntes elétricas da linha 1 (série 1 em azul) e linha 2 (série 2 em vermelho), ou seja, constata-se uma sobreposição dos gráficos das duas correntes medidas.

Portanto, as potências elétricas determinadas a partir do monitoramento das correntes elétricas medidas representam efetivamente uma resposta para atender as demandas de potência pela máquina no instante de captura dos sinais.

Figura 26 – Gráfico detalhando os picos de corrente (A) ao longo do tempo decorrido no ensaio (ms) (Autor)

Detalhes ampliados dos trechos com os picos, numerados na Figura 26 de 1 a 10, demonstrando o alinhamento das correntes medidas, estão disponibilizados no Apêndice J.

Analisando o gráfico detalhadamente em seus trechos e comparando com o observado durante os ensaios de usinagem, percebeu-se que a maior demanda de

potência elétrica pela máquina não ocorre durante o processo de remoção de material (usinagem), e sim, no deslocamento rápido da ferramenta para reposicionamento para nova passada ou troca de ferramenta. Esse fenómeno é mostrado na Figura 27.

Figura 27 – Detalhe do pico de corrente 4 mostrando o intervalo em usinagem

5.2.2 Resultados da segunda etapa dos ensaios

Na segunda etapa, foram realizados 29 ensaios com a ferramenta composta de pastilhas Sandvik DNMG 110408 CG2015 (Anexo 1) montadas em suporte Sandvik PDJNR 2525M 11 (Anexo 2). Em todos os ensaios, foram utilizadas pastilhas novas e foram divididos da seguinte forma:

- 7 ensaios com Alumínio ABNT 6351T6 com sete passadas em usinagem em cada ensaio, totalizando 49 conjuntos de dados;
- 11 ensaios com Bronze UNS C63000 com três passadas em vazio e quatro passadas em usinagem em cada ensaio, totalizando 77 conjuntos de dados;
- 6 ensaios com aço SAE P20 com uma passada em vazio e seis passadas em usinagem em cada ensaio, totalizando 42 conjuntos de dados;
- 5 ensaios com aço AISI 304 com uma passada em vazio e seis passadas em usinagem em cada ensaio totalizando, 35 conjuntos de dados.

	/5000rpm	с <u>АР</u> Аре-Рс	0	3 1200	0 1446	3 1614	7 1487
aios	a 5mm/	P,	0	3 26	6 56	7 82	4 75
Ensa	assad	ΔPe		146	200	243	224
a de	7ª F	Pe	4383	5846	6389	6820	6627
Etap	773rpm	ΔP Δpe - Po	0	1773	2329	2517	2113
s - 2°	0mm/4	Pc	0	500	1063	1563	1438
Watt	ssada 1	ΔPe	0	2273	3392	4080	3551
es em	6ª Pa	Pe	4113	6386	7505	8193	7664
valore	82rpm	ΔP Δpe·Pc	0	1674	2286	2407	1983
Pc) - 1	5mm/31	Ъс	0	005	1063	1563	1438
cas (ssada 1	ΔPe	0	2174	3349	970E	3421
e teóri	5ª Pa	Pe	2824	4998	6173	6794	6245
Corte	ß6rpm	ΔP Δpe·Pc	0	1781	2073	2451	2051
as de	0mm/23	Рс	0	200	1063	1563	1438
tência	ssada 2	ΔPe	0	2281	3136	4014	3489
as Po	4ª Pa	Pe	2011	4292	5147	6025	5500
e) e (09rpm	ΔP Δpe - Pc	0	1599	1	2537	2092
las (F	5mm/19	Pc	0	500	١	1563	1438
assac	ssada 2	ΔPe	0	2099	١	4100	3530
nas p	3ª Pa	Pe	1582	3681	1	5682	5112
lidas	90rpm	ΔP Δpe - Pc	0	1450	١	166	167
med	0mm/15	Ыс	0	200	-	263	518
ximas	ssada 3	ΔPe	0	1950	-	729	685
ts Má	2ª Pa	Pe	1420	0/EE	١	2149	2105
étrica	63rpm	ΔP ΔP	0	067	١	١	1
ias El	5mm/13	Рс	0	310	1	1	-
otênc	ssada 3	ΔPe	0	1040	-	1	-
as Po	1ª Pa	Pe	1308	2357	-	1	-
Média d	Condicão do	Condição do Ensaio		Alumínio 6351 T6	Bronze Alum Super	Aço ferramenta P20	Aço Inoxidável 304

Tabela 12 – Média dos resultados da 2ª etapa (Autor)

Nos ensaios realizados, para cada passada em usinagem, há um trecho em que a ferramenta avança em vazio que fornece valores de corrente e tensão, também nessa condição.

Desta forma, foram obtidos 323 conjuntos de dados, distribuídos da seguinte forma:

- 213 conjuntos de dados com avanço em vazio;
- 44 conjuntos de dados em usinagem com Bronze UNS C63000;
- 36 conjuntos de dados em usinagem com aço SAE P20;
- 30 conjuntos de dados em usinagem com aço AISI 304.

Na Tabela 12, são apresentados os resultados de forma resumida e comparados em cada passada, em que:

- Pe é a média dos máximos das potências elétricas medidas em cada passada e condições (avanço vazio ou em usinagem) para cada material;
- ΔP_e é a diferença entre a P_e em usinagem e a P_e em vazio na mesma passada;
- P_c é a potência de corte teórica correspondente;
- ΔP como já informado na tabela é a diferença entre ΔP_e e P_c .

Resultados completos dos ensaios podem ser consultados no Apêndice K.

Analisando os dados obtidos, observa-se que a Potência Elétrica medida (P_e) depende da potência elétrica do avanço em vazio, da potência de corte (no caso, potência de corte teórica) e também de um fator relacionado a diferença entre a Potência elétrica total (que é a própria P_e) e a potência de corte (P_c). Por outro lado, a potência elétrica em vazio é função da velocidade de rotação do eixo árvore.

Desta forma, se conclui que a Equação 7 (apresentada no tópico 4.1) não expressa a dinâmica da relação entre as variáveis envolvidas no fluxo de energia do sistema. A Equação 8 traduz melhor o que foi analisado no parágrafo anterior:

$$P_{ef} = P_e(n) + P_c + \Delta P(P_c)$$
(8)

Em que:

 P_{ef} = potência elétrica efetiva demandada pela máquina durante a usinagem; $P_{e}(n)$ = potência elétrica demandada pela máquina durante avanço em vazio em função da velocidade angular do eixo árvore; P_{e} = potência de certe toárica calculada per meio da equação 5;

 P_c = potência de corte teórica calculada por meio da equação 5; $\Delta P(P_c)$ = diferença de potência em função da Potência de corte teórica.

A metodologia mais simples para se chegar à relação entre as variáveis acima é determinar as equações parciais separadamente. Isso é possível selecionando e arranjando adequadamente os dados da tabela.

5.2.3 Análise dos resultados da segunda etapa

Da Tabela 12, podem-se isolar os valores da velocidade angular do eixo árvore (n) em rpm e os respectivos valores da potência elétrica medida com o avanço em vazio, conforme a Tabela 13.

n (rpm)	Pe (W)
1363	1308
1590	1420
1909	1582
2386	2011
3182	2824
4773	4113
5000	4383

Tabela 13 – valores da potência elétrica medida em função da velocidade angular do eixo árvore (Autor)

Figura 28 – Gráfico e equação da Potência Elétrica em função da velocidade angular do eixo árvore (Autor).

Com o software Excel, pode-se determinar que a curva, que mais se ajusta aos valores medidos, possui tendência linear com coeficiente de correlação de 0,998, conforme a Figura 28, e é representada pela Equação 9:

 $P_e(n) = 0,8616 \cdot n + 33,586$ (9)Em que: $P_e(n) =$ Potëncia elétrica com avanço em vazio em função da velocidade
do eixo árvore em watts;
n = Velocidade angular do eixo árvore em rpm.

Utilizando a mesma metodologia para os valores da potência de corte teórica calculada e a diferença de potência medida, se obtém a Tabela 14, o gráfico que relaciona as duas variáveis, com coeficiente de correlação de 0,909, apresentado na Figura 29 e a Equação 10 correspondente:

$$\Delta P (P_c) = 0,873 . P_c + 1010,4$$
(10)

Em que:

 $\Delta P (P_c)$ = Diferença da Potência elétrica medida em função da potência de corte teórica em watts;

 P_c = Potência de Corte teórica em watts.

Figura 29 – Gráfico e equação da diferença de potência em função da potência de corte teórica (Autor)

Substituindo $P_e(n)$ e $\Delta P(P_c)$ na Equação 8 pelos valores encontrados nas Equações 9 e 10 se obtém:

$$P_{ef} = 0,8616 . n + 33,586 + P_c + 0,873 . P_c + 1010,4$$

Fazendo as operações e isolando P_c se obtém a Equação 11:

$$P_{c} = \underline{P_{ef} - 0.86 . n - 1044}_{1,87}$$
(11)

54

Em que: P_c :=Potência de Corte Instantânea em watts; P_{ef} =Potência Elétrica medida em watts;n =velocidade angular do eixo árvore em rpm.

A equação 11 permite a determinação da Potência de Corte Instantânea a partir da Potência Elétrica obtida por meio do monitoramento das correntes elétricas e tensões elétricas na alimentação dos módulos controladores dos servomotores da máquina.

5.2.4 Conclusões da segunda etapa dos ensaios

Na segunda etapa de ensaios foi obtida a equação de conversão da Potência Elétrica medida em Potência de Corte efetiva durante o processo de usinagem. Entretanto, observou-se a necessidade de se monitorar a velocidade de rotação do eixo árvore que exerce influência significativa na potência total demandada pela máquina.

5.3 Terceira etapa dos ensaios

Na terceira etapa de ensaios, visando testar e validar a metodologia, sistema e equação de conversão de energia elétrica medida em Potência de Corte (Equação 11), foi simulada a usinagem de uma peça em produção, o pino em aço inoxidável AISI 304 detalhado na Figura 16 (página 39).

5.3.1 Resultados da terceira etapa dos ensaios

Na produção, foi utilizada uma pastilha nova com uma única aresta de corte e utilizada até sua completa deterioração. Desta forma, foram produzidas 36 peças, sendo que, na usinagem da última peça, a pastilha estava totalmente deteriorada e, por esse motivo, não houve a remoção de material programada.

A Figura 30 mostra a primeira peça produzida dentro das especificações, a Figura 31 mostra a última peça produzida, em que se pode constatar que não houve a remoção total do material durante o processo de usinagem e o acabamento superficial comprova o elevado desgaste da pastilha.

Figura 30 – Primeira peça produzida no ensaio (Autor)

Figura 31 – Última peça produzida no ensaio (Autor)

Os resultados estão detalhados na Tabela 15. Observa-se que houve um progressivo aumento da Potência de Corte com o decorrer do processo de produção, com exceção da última peça na qual, efetivamente, não houve corte adequado de material.

Resultado	Resultados obtidos para as potências com a peça em produção													
Pino	Primeira pa (d=12,5mm/	assada (W) n=3820rpm)	Segunda p (d=10,5mm/	assada (W) 'n=4550rpm)										
(sequência)	P elétrica medida	Pc mecânica equivalente	P elétrica medida	Pc mecânica equivalente										
1	5105	415	5137	96										
2	5061	391	5191	125										
3	4993	355	132											
11	5114	420	5241	152										
12	5358	550	5297	182										
21	5086	405	5307	187										
22	5269	503	5371	221										
31	5813	794	5414	244										
32	5947	865	5517	299										
34	6178	989	5584	335										
36	5816	795	5283	174										

Tabela 15 – Resultados obtidos com a peça em produção (Autor)

O gráfico da Figura 32 permite visualizar com maior clareza o aumento da Potência de Corte com a evolução do desgaste da ferramenta em uso. Na construção do gráfico, foram desconsiderados os resultados obtidos na usinagem da última peça, por não ter sido efetuada a remoção total de material, invalidando os resultados obtidos nessa usinagem.

Figura 32 – Evolução da Potência de Corte em relação às peças produzidas (Autor)

5.3.2 Conclusões da terceira etapa de ensaios

Ficou comprovada a eficiência do sistema e metodologia para determinação da Potência de Corte por meio do monitoramento da variação de demanda de potência elétrica pela máquina, bem como o aumento dessa potência, conforme a pastilha se desgasta e perde sua eficiência de corte no processo de usinagem.

No gráfico da Figura 32 pode-se observar que na 1ª passada, onde a profundidade de usinagem foi maior, e consequentemente a potência de corte também, a curva apresentou uma tendência de crescimento exponencial, enquanto na 2ª passada, com profundidade de usinagem e potência de corte menores, a tendência de crescimento foi linear. Isso pode ser mais bem estudado em trabalhos futuros.

6 CONCLUSÕES E TRABALHOS FUTUROS

A metodologia e aparato desenvolvido se mostraram eficazes, no sentido de comprovar uma correspondência entre a Variação da Demanda de Potência Elétrica pela máquina e a Potência de Corte Efetiva no processo de usinagem em torno CNC. Conforme a pastilha se desgasta, perde sua eficiência, aumentando gradativamente a Potência de Corte envolvida no processo de usinagem.

Pode-se concluir que, para cada diferente equipamento em que a metodologia e sistema forem aplicados, haverá necessidade de ensaios de forma a se determinar a equação de conversão para cada caso.

Entretanto, para viabilizar sua aplicação industrial por meio de um sistema tecnológico eficiente, preciso e de simplicidade na implantação, será necessário um microcontrolador com maior capacidade de processamento, que possibilite alta taxa de captura e processamento de sinais da ordem de intervalos menores que 8 ms (precisão maior que 1/2 Hz)¹¹ ao invés dos 60 ms (precisão de 3,6 Hz). Em outros trabalhos, como os referenciados na revisão bibliográfica (tópico 2), foram utilizados dispositivos de captura e tratamento de sinais consagrados e adquiridos no mercado, entretanto, essa não é a proposta deste trabalho, seja pelo alto custo desses equipamentos (proibitivos para empresas de pequeno porte) ou pela complexa instalação que exigem por demandarem módulos separados como dispositivos de aquisição de dados (DAQ) sensíveis e microcomputadores (para análise de sinais por software) além dos sensores o que torna inadequada sua aplicação em ambiente industrial.

Também será necessário implementar algum grau de automação, em especial, para medição da velocidade do eixo árvore e para identificação da posição e deslocamento da ferramenta que possibilite a identificação dos dados no momento da usinagem.

¹¹ De acordo com o Teorema de Nyquist (também conhecido como "Teorema da Amostragem), a quantidade de amostras por unidade de tempo de um sinal, chamada taxa ou freqüência de amostragem, deve ser maior que o dobro da maior freqüência contida no sinal a ser amostrado, para que possa ser reproduzido integralmente sem erro (RANDHALL, 2011 – p.72). Como a frequência da rede elétrica no Brasil é de 60 Hz, devem ser capturadas mais do que duas amostras por período (duas a cada 16 ms que corresponde a 1 amostra a cada 8 ms).

REFERÊNCIAS BIBLIOGRÁFICAS

ALTIN, A. *et al.* The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools. Materials & Design, v.28, p.2518-2522. 2007.

ATTANASIO, A. *et al.* **Minimal quantity lubrication in turning: Effect on tool wear**. Wear, v.260, p.333-338. 2006.

AVRAM, O. I., XIROUCHAKIS, P. Evaluating the use phase energy requirements of a machine tool system. Journal of Cleaner Production, v.19.6 p.699-711. 2011.

BEHRENDT, T. *et al.* **Development of an energy consumption monitoring procedure for machine tools**. Author links open overlay panel. Laboratory for Manufacturing and Sustainability University of California at Berkeley USA. 2012.

BHUSHAN, R. K. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of Cleaner Production, v.39 p.242-254. 2013.

BONIFACIO, M.E.R., DINIZ, A.E. Correlating tool wear, tool life, surface roughness and tool vibration in finish turning with coated carbide tools. Wear, v.173, p.137-144. 1994.

BOYLESTAD, R. L. Introdução à Análise de Circuitos. São Paulo: Pearson, 12^a Edição, 2014.

DIMLA, E. Sensor signals for tool-wear monitoring in metal cutting operations a review of methods. International Journal of Machine Tools and Manufacture, v.40, p.1073-1098. 2000.

EVANS, M. et al. Arduino em Ação. São Paulo: Novatec, 2013.

FALEH, A. *et al.* **Use of eletrical power for online monitoring of tool condition.** Resenha. 2005. Disponível em < www.sciencedirect.com > Acesso em: 16 jun.2016.

FRACARO, J. **Fabricação pelo Processo de Usinagem e meios de Controle**. Curitiba, Intersaberes, 1ª Edição, 2013. GROOVER, M. P. Automação Industrial e Sistemas de Manufatura. São Paulo, Pearson, 3ª Edição, 2011.

INGAPROJETOS.Aula10.Disponívelem<http://ingaprojetos.com.br/download/processo%20de%20usinagem.pdf>Acessadoem 12/01/2018

KURNAR, A.S. *et al.* **The effect of tool wear on tool life of alumina-based ceramic cutting tools while machining hardened martensitic stainless steel.** Journal of Materials Processing Technology, v.173, p.151-156. 2006

LANÇONI, P. N. Estudo Comparativo de Medição de Força de Corte no Processo de Retificação. Dissertação de Mestrado em Engenharia Mecânica. Faculdade de Engenharia de Bauru – UNESP, janeiro/2008.

LI, W., KARA, S. An empirical model for predicting energy consumption of manufacturing processes: a case of turning process. CIRP Annals, v.61, p.43-46. 2011

MA, J. *et al.* **Assessment of cutting energy consumption and energy efficiency in machining of 4140 steel**. International Journal of Advanced Manufacturing Techn, v.74, p.1701-1708. 2014

MACHADO, A. R. *et al.* **Teoria da Usinagem dos Materiais**. São Paulo: Ed. Blucher, 12^a Edição, 2009.

MANNAMA, M. A. *et al.* **Monitoring and Adaptive Control of Cutting Process by Means of Motor Power and Current Measurements.** CIRP Annals – Manufactoring Technology, v.38, p.347-350. 1989. Disponível em < www.sciencedirect.com > Acesso em: 16 jun.2016.

MARKSBERRY, P.W., JAWAHIR, I.S. **A comprehensive tool-wear/tool-life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing.** International Journal of Machine Tools and Manufacture, v.48, p.878-886. 2008. NEWMAN S.T. *et al.* Energy efficient process planning for CNC machining. CIRP – Journal of Manufacturing Science and Technology. v.6 p.127-136. 2012.

RANDHALL, R. B. Vibration – Based Condition Monitoring. New Delhi: Wiley, 2011.

ROMI. Documentação Técnica. Centur 30D. Santa Bárbara D'Oeste, 2009.

SANDVIK Coromant. Manual Técnico de Usinagem. Suécia: Elanders, 2009

SANDVIK Coromant Academy. Training Handbook. Suécia: Elanders, 2015.

SANDVIK Coromant. Turning Tools. Suécia: Elanders, 2015.

SHAOHUA, H. *et al.* **An on-line approach for energy efficiency monitoring of machine tools**. Journal of Cleaner Production, v.27, p.133-140. 2012

SARWAR, M. *et al.* **Measurement of specific cutting energy for evaluating the efficiency of bandsawing different workpiece materials**. International Journal of Machine Tools and Manufacture, v.49, p.958-965. 2009

SOUZA, A.J. Aplicação de multisensores no prognóstico da vida da ferramenta de corte em torneamento. Tese de doutorado em Engenharia Mecânica. UFSC. Florianópolis. setembro/2004.

SIEMENS. **Sinamics S. Induction Motors for Machine Tools**. Nurnberg, Germany, 2009.

SIEMENS. Sinumerik 802D SL. Manual de programação e de utilização. São Paulo, 2007.

TERMITE: Ferramenta de software, que permite capturar sinais provenientes do Arduino disponível em http://termite.win7dwnld.com/download-new-version

Anexo 1: Pastilha DNMG 110408

Fonte: SANDVICK (2009) – Torneamento Geral (pag. A-26) TORNEAMENTO GERAL Pastilhas negativas com formato básico

T-Max P

Rômbica 55°

Para dimensões, veja a chave de código na página A16.

						Р	•					Μ					К					s			
				GC	GCG	CGC	G	GC	СТ	GC	GC	GCG	iC G	CGC	GC	GC	GC	GC	- G	iCG	G	-	-	GC	
				2	LO L	2 5	2	2	5	2	2	LO L	n u	2	5	5	0	S	× 4	0 4	S LO	A	A	F	ĺ
	ISO		iC	151	152	421	422	423	501	Ŧ	112	201		235	300	320	321	321	H	=	i f	H	H	S05	ANSI
	DNMX 11 04 04-WF	11	3/8	☆	☆	*	\$	7	☆	☆	☆	*						*							DNMX 331-WF
	DNMX 11 04 08-WF			☆	\$	ኛ 🖈	1	7	☆	\$	☆	*	Т		☆			*	Т	Т	Г				DNMX 332-WF
	DNMX 15 04 04-WF	15	1/2			*	1		☆																DNMX 431-WF
DNMX-WF	DNMX 15 04 08-WF			☆	\$	ל א	1	7	☆	1	☆	×						\star							DNMX 432-WF
TECHNOLDU	DNMX 15 04 12-WF				5	ל א	r 👘											★							DNMX 433-WF
Wihe.	DNMX 15 06 04-WF					*	r –		☆																DNMX 441-WF
	DNMX 15 06 08-WF			☆	\$	ל א	\$	7	☆	1	☆	*			☆			\star							DNMX 442-WF
	DNMX 15 06 12-WF				5	ל א	1	7										\star							DNMX 443-WF
	DNMG 11 04 04-PF	1	3/8	☆	☆	*	\$	7	☆												Т				DNMG 331-PF
	DNMG 11 04 08-PF			☆	\$	7	1	1																	DNMG 332-PF
	DNMG 11 04 12-PF			☆	\$	7	\$	7																	DNMG 333-PF
DNMG-PF	DNMG 15 04 04-PF	15	1/2	☆	☆	*	1	7	작																DNMG 431-PF
	DNMG 15 04 08-PF			☆	\$	ל א	\$	r	☆																DNMG 432-PF
	DNMG 15 04 12-PF			☆	\$	7	1	7	☆																DNMG 433-PF
	DNMG 15 06 04-PF			☆	☆	*	1	7	☆																DNMG 441-PF
	DNMG 15 06 08-PF			☆	\$	7	1	7	☆																DNMG 442-PF

Anexo 2: Suporte Sandivick PDJNR 2525M 11

Fonte: SANDVICK (2009) - Torneamento Geral (pag. A-153)

Ferramentas convencionais

Fixação T-Max P por alavanca

Mostrado versão direita, a menos que estabelecido de outra forma

Versão métrica

				Dimens	ões, mm	1						
Aplicação principal		iC	Código para pedido	Ь	f ₁	h	h ₁	<i>I</i> 1	<i>I</i> 3	γ ¹)	λ ₉ 2)	Pastilhas padrão
	(11)	3/8	PDJNR/L 1616H 11	16	20	16	16	100	29.7	-6°	-7°	DNMG 11 04 08
			PDJNR/L 2020K 11	20	25	20	20	125	29.7	-6°	-7°	DNMG 11 04 08
≤ 27*			PDJNR/L 2525M 11	25	32	25	25	150	29.7	-6°	-7°	DNMG 11 04 08
			PDJNR/L 3225P 11	25	32	32	32	170	29.7	-6°	-7°	DNMG 11 04 08
101-T	15	1/2	PDJNR/L 2020K 15	20	25	20	20	125	36.2	-6°	-7°	DNMG 15 06 08
			PDJNR/L 2525M 15	25	32	25	25	150	36.2	-6°	-7°	DNMG 15 06 08
			PDJNR/L 3225P 15	25	32	32	32	170	36.2	-6°	-7°	DNMG 15 06 08
			PDJNR/L 3232P 15	32	40	32	32	170	36.2	-6°	-7°	DNMG 15 06 08
			R/L171.35-4025-15	25	28.7	40	40	200	38	-6°	-7°	DNMG 15 06 08
			R/L171.35-5032-15	32	35	50	50	225	38	-6°	-7°	DNMG 15 06 08

+ b +

Anexo 3: Força específica de corte e dureza dos materiais Fonte: SANDVICK (2009). Manual Técnico de Usinagem – pags. A-80 e A-82

(adaptado)

ISO	No. CMC	Material		Força de corte especí- fica k _c 0.4	Dureza Brinell
				N/mm²	HB
_	01.1	Aços-carbono	C = 0.1 - 0.25%	2000	125
P	01.2	19	C = 0.25 - 0.55% C = 0.55 - 0.80%	2200	170
	02.1 02.12 02.2 02.2	Aços baixa-liga, (elementos de liga ≤5%)	Aço de rolamento de esferas não temperado Temperado e revenidoTemperado e revenido	2150 2300 2550 2850	180 210 275 350
S	03.11 03.21	Aços alta-liga, (elementos de liga >5%)	Aço ferramenta recozido temperado	2500 3900	200 325
06. 06. 06.		Aços fundidos	Sem liga baixa liga (elementos de liga ≤5%) Alta liga, elementos de liga >5%)	2000 2100 2650	180 200 225
Μ	05.11 05.12 05.13	Aços inoxidáveis – Barras/forjados Ferríticos/martensí- ticos	Não temperado PH-temperado Temperado	2300 3550 2850	200 330 330
	05.21	Aços inoxidáveis	Austenítico	2300	180
	05.22 05.23	- Barras/forjados Austeníticos	PH-temperado Superausteníticos	2950	200
Xor	05.51 05.52	Aços inoxidáveis – Barras/forjados Austeníticos-ferríti- cos (Duplex)	Não soldáveis ≥ 0.05%C Soldáveis <0.05%C	2550 3050	230 260
	15.11	Aços inoxidáveis -	Não temperados	2100	200
S,	15.12	FundidosFerriticos/-	PH-temperados Temperados	2650	330
R	15.21	Aços inoxidáveis	Austenítcos	2200	180
	15.22	- Fundidos Austeníticos	PH-temperados	3150 2700	330
N	30.11	Ligas de alumínio	Forjadas ou forjadas e trabalhadas a frio, não envelhecidas	500	60
			Forjadas ou forjadas e envelhecidas	800	100
Sosos	30.21 30.22	Ligas de alumínio	Fundidas, não envelhecidas Fundidas ou fundidas e envelhecidas	750 900	75 90
erre	30.41 30.42	Ligas de alumínio	Fundidas, 13–15% Si Fundidas, 16–22% Si	950 950	130 130
L L	33.1	Cobre e ligas de	Ligas de usinabilidade melhorda, ≥1% Pb	700	110
e E	33.2	cobre	Latão, bronzes com chumbo, ≤1% Pb	700	90
Ž			Bronze e cobre sem chumbo incl. cobre eletrolítico	1750	100

Anexo 4: Sensor de Corrente modelo SCT-013

Fonte: Beijing Yaohuadechang Electronic Co.- www..yhdc.com / www..yhdc.lv - 20/08/2016 Split-Core Current Transformer

Voltage output type Schematic diagram

Diagram for standard three-pin plug

Model	SCT-013-000	SCT-013-005	SCT-013-010	SCT-013-015	SCT-013-020
Input current	0-100A	0-5A	0-10A	0-15A	0-20A
Output mode	Current/33m A	Voltage/1V	Voltage/1V	Voltage/1V	Voltage/1V
Model	SCT-013-025	SCT-013-030	SCT-013-050	SCT-013-060	SCT-013-070
Input current	0-25A	0-30A	0-50A	0-60A	
Output mode	Voltage/1V	Voltage/1V	Voltage/1V	Voltage/1V	

Output mode: Voltage output type built-in sampling resistor; Current output type built-in protective diode; Forbidden to be opening operating for current type.

input current output voltage		build-in sampling resistance (RL)
0-1V	±1%	(62Ω)
resistance grade	work temperature	dielectric strength(between shell and output)
Grade B	-25℃~+70℃	1500V AC/1min 5mA
	output voltage 0-1V resistance grade Grade B	output voltage non-linearity 0-1V ±1% resistance grade work temperature Grade B -25°C~+70°C

Typical table of technical parameters:

Anexo 5: Esquema de ligações Sensor de Corrente modelo SCT-013 Fonte:

http://cms.35g.tw/coding/arduino-using-sct013-measure-current/

Apêndice A – Programa de usinagem com comentários explicativos e tempos decorridos em cada fase de operação.

Linha	Programa	Descrição do comando	Faixa de tempo (segundos)	Obs.
N10	G291			
N20	G21 G40 G90 G95			
N30	Т00			_
N40	G54 G0 X200 Z300	Blocos iniciais / deslocamento para ponto de troca de ferramenta	0 a 2	m/min
N50	T0501 (ACAB_EXT)			= 150
N60	G96 S150			Vc
N70	G92 S3000 M3			
N80	G0 X30 Z50	Aproximação rápida	2 a 4	nte:
N90	G1 Z10 F0.4 M8	1º passe - Avanço em vazio/usinagem: d30 - f = 0,4 mm/r - vc = 150 m/min - 1292 rpm Percorrido em Z: 40mm / tempo: 4,64 seg.	4 a 8	orte constai
N100	G0 X35 Z50	Deposicionomento rénido poro povo posso	anrovim 0 F	de c
N110	X25	Reposicionamento rapido para novo passe	aproxim. 0,5	de c
N120	G1 Z10	2º passe - Avanço em vazio/usinagem d25 - f = 0,4 mm/r - vc = 150 m/min - 1910 rpm Percorrido em Z: 40 mm / tempo: 3,14 seg.	8 a 12	om velocida
N130	G0 X30 Z50	Poposicionamento ránido para povo passo	aprovim 0 5	2 O C
N140	X20	Reposicionamento rapido para novo passe		/ang
N150	G1 Z10	3º passe - Avanço em vazio/usinagem d20 - f = 0,4 mm/r - vc = 150 m/min - 2390 rpm Percorrido em Z: 40 mm / tempo: 2,51 seg	12 a 15	A
N160	G0 X25 Z50			
N170	X15	Reposicionamento rapido para novo passe	aproxim. 0,5	nte
N180	G1 Z10	4º passe - Avanço em vazio/usinagem d15 - f = 0,4 mm/r - 3000 rpm Percorrido em Z: 40 mm / tempo: 2,00 seg.	16 a 18	/ore consta
N190 N200	G0 X20 Z50 X10	Reposicionamento rápido para novo passe	aproxim. 0,5	ixo árv n
N210	G1 Z10	5º passe - Avanço em vazio/usinagem d10 - f = 0,4 mm/r - 3000 rpm Percorrido em Z: 40 mm / tempo: 2,00 seg.	19 a 20	idade do e 3000 rpr
N220	G0 X15 Z50	Denocicionamento ránido para pous pre-		eloc
N230	X5	Reposicionamento rapido para novo passe	aproxim. 0,5	n ve
N240	G1 Z10	5º passe - Avanço em vazio/usinagem d5 - f = 0,4 mm/r - 3000 rpm Percorrido em Z: 40 mm / tempo: 2,00 seg.	21 a 23	Avanço cor
N250	G0 X10 Z50 M9		23 a 26	

N260	Т00			
N270	G54 G0 X200 Z300	Deslocamento rápido para troca de		
N280	T0601 (bedame)	ferramenta.		
N290	G96 S80			
N300	G92 S2000 M3			
N310	G0 X35 Z10.5	Aproximação rápida	26 a 28	
N320	G1 X-3 F0.05 M8	Corte	28 a 45	
N330	G0 X20 Z30 M9			
N340	Т00	Afastamento e Fim de programa	45 a 46	
N350	M30			

Apêndice B – Esquema do circuito eletrônico do Dispositivo de Captura, condicionamento e tratamento dos sinais.

Apêndice C – Código para Calibração dos sinais de tensão elétrica

//Valores analógicos básicos lidos nas entradas de tensões

//Definição das Variáveis

float sensorTensao_1 = A1; //pino em que está ligado o sinal do primeiro sensor de tensao elétrica float valorLido_1 = 0; //valor lido na entrada analógica 1

float sensorTensao_2 = A2; //pino em que está ligado o sinal do segundo sensor de tensao elétrica float valorLido_2 = 0; //valor lido na entrada analógica 2

unsigned long time; //designa os intervalos de medição em unidades de tempo

void setup() {
 Serial.begin(9600); //Inicializa a comunicação Serial na taxa de 9600 bps
}

void loop() {

valorLido_1 = analogRead(sensorTensao_1); //leitura da porta analógica em que o sensor de tensao eletrica 1 está ligado

valorLido_2 = analogRead(sensorTensao_2); //leitura da porta analógica em que o sensor de tensao eletrica 2 está ligado

time = millis();

Serial.println(time); //imprime o tempo em tabela

Serial.print(valorLido_1); Serial.print("\t"); //imprime o valor lido 1 (tensão 1) em tabela

Serial.print(valorLido_2); Serial.print("\t"); //imprime o valor lido 2 (tensão 2) em tabela

delay(100); //intervalo de 100 milisegundos entre cada leitura

}

Apêndice D – Código para Calibração dos sinais de corrente elétrica

//Calibração dos sensores de correntes

#include"EmonLib.h" //Inclusão da biblioteca de conversão dos sensores de correntes

EnergyMonitor emon1; //Instância de monitoramento do sensor de corrente 1

EnergyMonitor emon2; //Instância de monitoramento do sensor de corrente 2

unsigned long time; //designa os intervalos de medição em unidades de tempo

void setup() {

Serial.begin(9600); //Inicializa a comunicação Serial na taxa de 9600 bps

emon1.current(1,42); //Pino da entrada analógica 1 e parâmetro de calibração obtido para corrente 1

emon2.current(2,42); //Pino de entrada analógica 2 e parâmetro de calibração obtido para corrente 2 }

void loop() {

double lrms1 = emon1.calclrms(30); //Cálculo da corrente rms 1 com 30 ciclos da onda para cada amostra

double lrms2 = emon2.calclrms(30); //Cálculo da corrente rms 2 com 30 ciclos da onda para cada amostra

time = millis();

Serial.println(time); //imprime o tempo em tabela

Serial.print(Irms1); Serial.print("\t"); //imprime o valor da corrente rms 1 em tabela

Serial.print(Irms2); Serial.print("\t"); //imprime o valor da corrente rms 2 em tabela

delay(100); //intervalos de 100 milisegundos entre cada leitura

}

TENSÕES						
(Valores Básicos e Valores medidos)						
Tens	ão 1	Tens	ão 2			
Lido (valor básico)	Medido (V)	Lido (valor básico)	Medido (V)			
0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00			
212.00	112,00	215.00	112,00			
216.00	112,00	218.00	112,00			
216.00	112,00	217.00	112,00			
215.00	112,00	216.00	112,00			
215.00	112,00	216.00	112,00			
214.00	112,00	215.00	112,00			
216.00	112,00	218.00	112,00			
216.00	112,00	217.00	112,00			
215.00	112,00	216.00	112,00			
215.00	112,00	216.00	112,00			
214.00	112,00	216.00	112,00			
215.00	112,00	217.00	112,00			
215.00	112,00	216.00	112,00			
215.00	112,00	216.00	112,00			
214.00	112,00	215.00	112,00			
215.00	112,00	217.00	112,00			
215.00	112,00	216.00	112,00			
214.00	112,00	215.00	112,00			
213.00	112,00	215.00	112,00			
213.00	112,00	214.00	112,00			
215.00	112,00	216.00	112,00			
214.00	112,00	216.00	112,00			
214.00	112,00	215.00	112,00			
213.00	112,00	214.00	112,00			
213.00	112,00	214.00	112,00			
215.00	112,00	216.00	112,00			
215.00	112,00	216.00	112,00			
214.00	112,00	215.00	112,00			
213.00	112,00	215.00	112,00			
213.00	112,00	215.00	112,00			
216.00	112,00	217.00	112,00			

Tens	são 1	Tensão 2		
Lido (valor básico)	Medido (V)	Lido (valor básico)	Medido (V)	
213.00	112,00	215.00	112,00	
214.00	112,00	215.00	112,00	
214.00	112,00	215.00	112,00	
214.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
214.00	112,00	215.00	112,00	
215.00	112,00	216.00	112,00	
214.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
215.00	112,00	217.00	112,00	
214.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
215.00	112,00	217.00	112,00	
215.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
216.00	112,00	217.00	112,00	
215.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
216.00	112,00	217.00	112,00	
214.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
216.00	112,00	217.00	112,00	
215.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
216.00	112,00	217.00	112,00	
214.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
215.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
213.00	112,00	214.00	112,00	
215.00	112,00	217.00	112,00	
214.00	112,00	215.00	112,00	
213.00	112,00	215.00	112,00	
215.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
213.00	112,00	215.00	112,00	
215.00	112,00	216.00	112,00	
214.00	112,00	215.00	112,00	
214.00	112,00	215.00	112,00	
215.00	112,00	216.00	112,00	

Apêndice E – Valores das Tensões (valores básicos capturados e valores medidos)

Tens	ão 1	Tensão 2		
Lido (valor básico)	Medido (V)	Lido (valor básico)	Medido (V)	
0.00	0,00	0.00	0,00	
0.00	0,00	0.00	0,00	
0.00	0,00	0.00	0,00	
0.00	0,00	364.00	224,00	
0.00	0,00	363.00	224,00	
0.00	0,00	364.00	224,00	
0.00	0,00	364.00	224,00	
0.00	0,00	363.00	224,00	
0.00	0,00	364.00	224,00	
0.00	0,00	364.00	224,00	
0.00	0,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	

Tens	são 1	Tensão 2		
Lido (valor básico)	Medido (V)	Lido (valor básico)	Medido (V)	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	363.00	224,00	
364.00	224,00	364.00	224,00	
364.00	224,00	364.00	224,00	
Apêndice F – Código para Captura dos Valores de Tensões e Correntes e cálculo das Potências.

//Determinação da Potência Útil Instantânea na Usinagem em torno à CNC - Versão 4.0

#include"EmonLib.h" //Inclusão da biblioteca de conversão dos sensores de correntes

EnergyMonitor emon1; //Instância de monitoramento do sensor de corrente 1

EnergyMonitor emon2; //Instância de monitoramento do sensor de corrente 2

//Definição das demais Variáveis

float sensorTensao_1 = A3; //pino em que está ligado o sinal do primeiro sensor de tensao elétrica float valorLido_3 = 0; //valor lido na entrada analógica 3 float tensaoEletrica 1 = 0.00; //tensao elétrica 1 convertida para Volts

float sensorTensao_2 = A4; //pino em que está ligado o sinal do segundo sensor de tensao elétrica float valorLido_4 = 0; //valor lido na entrada analógica 4 float tensaoEletrica_2 = 0.00; //tensao elétrica 2 convertida para Volts

float P1 = 0; //potência elétrica 1 em Watts

float P2 = 0; //potência elétrica 2 em Watts

float PT = 0; //potência elétrica total em Watts

float Pu = 0; //conversão da potência elétrica em potência útil de usinagem

unsigned long time; //designa os intervalos de medição em unidades de tempo

void setup() {

Serial.begin(9600); //Inicializa a comunicação Serial na taxa de 9600 bps

emon1.current(1,42); //Pino de entrada e parâmetro de calibração da corrente 1

emon2.current(2,42); //Pino de entrada e parâmetro de calibração da corrente 2

}

void loop() {

double lrms1 = emon1.calclrms(30); //Cálculo da corrente rms 1 com base nos últimos 30 ciclos da onda

double lrms2 = emon2.calclrms(30); //Cálculo da corrente rms 2 com base nos últimos 30 ciclos da onda

valorLido_3 = analogRead(sensorTensao_1); //leitura da porta analógica em que o sensor de tensao eletrica 1 está ligado

if (valorLido_3 <= 345) {

tensaoEletrica_1 = (valorLido_3 * 0.4667) + 11.852; //converte o valor lido na entrada analógica para o valor da tensao elétrica 1 (de acordo com o fator do sensor)

if (valorLido 3 > 345){

tensaoEletrica_1 = (valorLido_3 * 3.4088) - 1013; //converte o valor lido na entrada analógica para o valor da tensao elétrica 1 (de acordo com o fator do sensor)

}

P1 = (Irms1 * tensaoEletrica_1); //cálculo da potência elétrica 1

valorLido_4 = analogRead(sensorTensao_2); //leitura da porta analógica em que o sensor de tensao eletrica 2 está ligado

if (valorLido_4 <= 345){

tensaoEletrica_2 = (valorLido_4 * 0.4667) + 11.852; //converte o valor lido na entrada analógica para o valor da tensao elétrica 2 (de acordo com o fator do sensor)

if (valorLido 4 > 345)

tensaoEletrica_2 = (valorLido_4 * 3.4088) - 1013; //converte o valor lido na entrada analógica para o valor da tensao elétrica 2 (de acordo com o fator do sensor)

}

P2 = (Irms2 * tensaoEletrica_2); //cálculo da potência elétrica 2

PT = (P1 + P2); //cálculo da potência elétrica total demandada pela máquina

//Pu = (PT - 2000) * 0.8; //cálculo da potência útil de usinagem (potência em vazio=2000/rendimento total=0,8)

time = millis();

Serial.println(time); //imprime o tempo em tabela

Serial.print(Irms1); Serial.print("\t"); //imprime o valor da corrente 1 em tabela Serial.print(tensaoEletrica_1); Serial.print("\t"); //imprime o valor da tensao elétrica 1 em tabela Serial.print(P1); Serial.print("\t"); //imprime o valor da potência elétrica 1 em tabela

Serial.print(Irms2); Serial.print("\t"); //imprime o valor da corrente 2 em tabela Serial.print(tensaoEletrica_2); Serial.print("\t"); //imprime o valor da tensao elétrica 2 em tabela Serial.print(P2); Serial.print("\t"); //imprime o valor da potência elétrica 2 em tabela

Serial.print(PT);

Serial.print("\t"); //imprime o valor da potência elétrica total em tabela

//Serial.print(Pu);
//Serial.print("\t"); //imprime o valor da potência útil de usinagem em tabela

delay(250); //intervalos de 250 milisegundos entre cada leitura

Apêndice G – Código Arduino para captura somente da corrente.

//Determinação da Corrente Instantânea na Usinagem em torno à CNC - Versão 4.0
#include"EmonLib.h" //Inclusão da biblioteca de conversão dos sensores de correntes
EnergyMonitor emon1; //Instância de monitoramento do sensor de corrente 1
EnergyMonitor emon2; //Instância de monitoramento do sensor de corrente 2

unsigned long time; //designa os intervalos de medição em unidades de tempo

void setup() {

Serial.begin(9600); //Inicializa a comunicação Serial na taxa de 9600 bps

emon1.current(1,42); //Pino de entrada e parâmetro de calibração da corrente 1

emon2.current(2,42); //Pino de entrada e parâmetro de calibração da corrente 2 }

void loop() {

double lrms1 = emon1.calclrms(30); //Cálculo da corrente rms 1 com base nos últimos 30 ciclos da onda

double lrms2 = emon2.calclrms(30); //Cálculo da corrente rms 2 com base nos últimos 30 ciclos da onda

time = millis();

Serial.println(time); //imprime o tempo em tabela

```
Serial.print(Irms1);
Serial.print("\t"); //imprime o valor da corrente 1 em tabela
```

```
Serial.print(lrms2);
Serial.print("\t"); //imprime o valor da corrente 2 em tabela
```

delay(50); //intervalos de 50 milisegundos entre cada leitura

}

APÊNDICE G								OTÉNCIAS	MÁXIMAS	IOS AVANG	OS (Watts)							
Kesumo dos Ensalos Finais 1ª Fase	1 1292 Tpm	1 Médias	1 Pu (teórica)	2 1910 Tpm	2 Médias	2 Pu (teórica)	3 2390 rpm	3 Médias	3 Pu (teórica)	4 3000 rpm	4 Médias	4 Pu (teórica)	5 3000 Tpm	5 Médias	5 Pu (teórica)	6 3000	6 Médias	6 Pu (teórica)
Ensaio Irms em Vazio 1	2637			2635			3632			4579			3761			3348		
Ensaio Irms em Vazio 2	1979			2831			2724			3692			×			×		
Ensaio Irms em Vazio 3	2488	2301	•	2874	2752	0	4069	3488	0	4202	4052	•	4046	3710	•	4035	3847	0
Ensaio Irms em Vazio 4	2722			2828			3191			4461			3799			3048		
Ensaio Prms 1 em Vazio	1778			2501			3873			3327			3235			3257		
Irms usin past nova alum 1	2503			4150			×			×			×			×		
Irms usin past nova alum 2	2843		ş	3834		0000	5789	1.000		9669	0000	0007	4504	-	100	4504	1001	000
Irms usin past nova alum 3	2508	P947	R	4216	4183	7007	5651	/86	7000	5681	9970	1881	5849	22	1271	4720	8	20
Prms usin past nova alum 1	2052			4461			5632			x			×			×		
Irms usin past gasta alum 1	2802			4464			4801			5072			5233			5069		
Irms usin past gasta alum 2	2811			3854			×			×			×			×		
Irms usin past gasta alum 2	3203	3023	720 + ΔP	4706	4384	2000 + AP	5489	5304	2000 + ΔP	6241	5535	1880 + ΔP	6443	5838	1250 + ΔP	×	5069	630 + ∆P
Prms usin past gasta alum 1	3190			4410			5643			5282			×			×		
Prms usin past gasta alum 2	3110			×			×			×			×			×		
Irms usin past nova ago 1	3341			7750			9225			8604			8023			6042		
Irms usin past nova aço 1a	3318			8438			8124			7692			×			×		
Irms usin past nova ago 2	3674	2406	0001	8450	04.00	eron	8830	0.140	uuua	8427	000	0027	×	0002	0070	×	0100	1670
Irms usin past nova aço 3	3442	3	000	66/1	200	8	8919	2	200	8248	2000		7727	22	ne le	6921	2	201
Prms usin past nova aço 1	3686			8290			8727			8308			8480			6150		
Prms usin past nova aço 2	3170			8082			8424			8773			6523			6711		
Irms usin past gasta aço 1	3816			2037			9833			9023			8833			6900		
Irms usin past gasta aço 1a	3834			8554			10336			9487			9660			5985		
Irms usin past gasta aço 2	4251	4750		8945	0880	01.000	8554	0000		0028	0644	0V - 0027	9012	0050	04 - 0646	6601	UCad	1570 - AD
Irms usin past gasta aço 3	4072			8824	3		×	8708		×	ţ		×	8700		×	200	
Prms usin past gasta aço 1	8927			9002			9214			10386			9028			7068		
Prms usin past gasta aço 2	3487			8613			10088			9127			1077			×		

Apêndice H – Resultados da 1ª Fase de ensaios.

Apêndice I – Exemplo de dados capturados e análise para extração daqueles do momento da usinagem (resumido).

Irms	usin p	oast nova	a aço			Potência	o
		1	1	Potencia Eletrica (W)	Tempo	Eletrica máxima	ื้ลรูลี
Irms 1 (A)	Irms 2 (A)	Tempo absoluto (ms)	Total Irms	(Total Irms x 288 V)	(ms)	no intervalo (W)	Oper
1,82	1,73	564443	3,55	1022,40	6003		
1,75	2,09	564508	3,84	1105,92	6068		
1,81	2,24	564575	4,05	1166,40	6135		
2,03	2,19	564640	4,22	1215,36	6200		
2,04	2,05	564706	4,09	1177,92	6266		
2,1	1,98	564772	4,08	1175,04	6332		
2,03	1,84	564838	3,87	1114,56	6398		
2,03	1,9	564903	3,93	1131,84	6463		
3,5	6,48	564970	9,98	2874,24	6530		
3,44	7,2	565036	10,64	3064,32	6596		
3,74	8,08	565101	11,82	3404,16	6661		
4,8	9,88	565168	14,68	4227,84	6728		
6,12	11,3	565233	17,42	5016,96	6793		
8,07	12,08	565299	20,15	5803,20	6859		
10,24	11,26	565365	21,50	6192,00	6925		
12,79	9,36	565431	22,15	6379,20	6991		
14,49	9,74	565496	24,23	6978,24	7056		
14,9	12,35	565563	27,25	7848,00	7123		
15,74	17,4	565628	33,14	9544,32	7188		
14,82	24,98	565694	39,80	11462,40	7254		
15,67	27,79	565761	43,46	12516,48	7321		
17,42	31,59	565826	49,01	14114,88	7386		
2,96	5,61	565892	8,57	2468,16	7452		
3,23	3,34	565958	6,57	1892,16	7518		
3,05	3,14	566024	6,19	1782,72	7584		
2,56	3,02	566090	5,58	1607,04	7650		
2,69	2,66	566156	5,35	1540,80	7716		
2,65	2,55	566221	5,20	1497,60	7781		e
2,42	2,38	566288	4,80	1382,40	7848	2241	ass
2,94	3,37	566353	6,31	1817,28	7913	5541	° Ľ
2,84	2,37	566420	5,21	1500,48	7980		ſ
2,9	2,72	566486	5,62	1618,56	8046		
2,68	2,71	566551	5,39	1552,32	8111		
2,87	2,9	566618	5,77	<u>1661,76</u>	8178		
2,48	3,4	566683	5,88	1693,44	8243		
2,31	2,57	566750	4,88	1405,44	8310		

	-				
2,34	3,96	567541	6,30	1814,40	9101
2,2	2,42	567607	4,62	1330,56	9167
2,61	3,47	567673	6,08	1751,04	9233
1,92	2,35	567739	4,27	1229,76	9299
1,84	2,35	567804	4,19	1206,72	9364
2,02	2,36	567871	4,38	1261,44	9431
2,3	2,92	567937	5,22	1503,36	9497
2,25	3,55	568003	5 <i>,</i> 80	1670,40	9563
1,86	2,84	568069	4,70	1353,60	9629
1,59	2,96	568465	4,55	1310,40	10025
2,67	4,09	568530	6,76	1946,88	10090
2,74	2,7	568596	5,44	1566,72	10156
3,13	2,92	568663	6,05	1742,40	10223
2,7	4,14	568728	6,84	1969,92	10288
2,42	6,54	568794	8,96	2580,48	10354
3,27	6,92	568860	10,19	2934,72	10420
3,64	7,93	568926	11,57	3332,16	10486
3,67	7,11	568991	10,78	3104,64	10551
4,63	6,97	569058	11,60	3340,80	10618
3,73	6,11	569123	9,84	2833,92	10683
4,73	4,85	569190	9,58	2759,04	10750
4,57	3,95	569255	8,52	2453,76	10815
3,8	3,42	569321	7,22	2079,36	10881
4,42	4,44	569388	8,86	2551,68	10948
4,06	5,13	569453	9,19	2646,72	11013
2,58	6,67	569519	9,25	2664,00	11079
2,61	7,78	569585	10,39	2992,32	11145
2,87	7,69	569651	10,56	3041,28	11211
3,05	8,13	569716	11,18	3219,84	11276
2,42	6,03	569783	8,45	2433,60	11343
2,41	6,15	569848	8,56	2465,28	11408
1,87	4,99	569915	6,86	<u>1975,68</u>	11475
2,38	2,92	569980	5,30	1526,40	11540
2,9	2,7	570046	5,60	1612,80	11606
2,3	2,79	570113	5,09	1465,92	11673
2,89	4,68	570178	7,57	2180,16	11738
3,13	5,62	570244	8,75	2520,00	11804
2,52	5,86	570310	8,38	2413,44	11870
3,42	7,1	570376	10,52	3029,76	11936
2,45	3,4	570441	5 <i>,</i> 85	1684,80	12001
2,1	3,74	570508	5,84	1681,92	12068
3,94	4,47	570573	8,41	2422,08	12133
2,22	3,13	570640	5,35	1540,80	12200
1,82	2,7	570705	4,52	1301,76	12265
1,49	2,17	570771	3,66	1054,08	12331

31,23	17,74	570836	48,97	14103,36	12396		
27,35	21,15	570903	48,50	13968,00	12463		
23,55	27,33	570969	50,88	14653,44	12529		
2,03	5,75	571035	7,78	2240,64	12595		
2,46	2,12	571101	4,58	1319,04	12661		
2,36	1,63	571166	3,99	1149,12	12726		
1,53	1,92	571233	3,45	993,60	12793		
2,16	3,73	571298	5,89	1696,32	12858		
2,73	5,03	571364	7,76	2234,88	12924		
3,36	2,5	571430	5,86	1687,68	12990		
2,21	2,14	571496	4,35	1252,80	13056		
1,65	1,99	571563	3,64	1048,32	13123		
2,32	2,25	571628	4,57	1316,16	13188		
2,19	3,16	571695	5,35	1540,80	13255		
3,56	5,8	571760	9,36	2695,68	13320		
2,47	5,28	571826	7,75	2232,00	13386		
3,21	4,37	571892	7,58	2183,04	13452		
1,72	1,69	571958	3,41	982,08	13518		
2,23	2,21	572024	4,44	1278,72	13584		
2,79	2,57	572090	5,36	1543,68	13650		
2,01	5,26	572155	7,27	2093,76	13715		
1,73	3,56	572222	5,29	1523,52	13782		
1,4	1,82	572288	3,22	927,36	13848		e
1,23	2	572354	3,23	930,24	13914	7750	ass
1,88	1,94	572420	3,82	1100,16	13980	1139	č
2,92	2,51	572485	5,43	1563,84	14045		7
1,51	4,53	572551	6,04	1739,52	14111		
8,61	16,53	572617	25,14	7240,32	14177		
8,65	15,33	572683	23,98	6906,24	14243		
9,61	15,27	572748	24,88	7165,44	14308		
8,58	12,52	572815	21,10	6076,80	14375		
10,96	12,14	572880	23,10	6652,80	14440		
8,61	8,18	572946	16,79	4835,52	14506		
12,94	9,24	573012	22,18	6387,84	14572		
12,81	8,45	573078	21,26	6122,88	14638		
11,08	12,9	573144	23,98	6906,24	14704		
9,63	13,61	573210	23,24	6693,12	14770		
6,32	15,4	573276	21,72	6255,36	14836		
7,22	14,92	573342	22,14	6376,32	14902		
7,97	16,2	573408	24,17	6960,96	14968		
9,06	16,57	573473	25,63	7381,44	15033		
11,29	15,65	573540	26,94	7758,72	15100		
11,62	11,68	573605	23,30	6710,40	15165		
10,76	8,62	573671	19,38	5581,44	15231		
11,82	7,24	573737	19,06	5489,28	15297		

		15363	5129,28	17,81	573803	7,83	9,98
		15429	6719,04	23,33	573869	11,23	12,1
		15495	6828,48	23,71	573935	14,52	9,19
		15561	7591,68	26,36	574001	16,93	9,43
		15626	6474,24	22,48	574066	14,62	7,86
		15692	6442,56	22,37	574132	14,29	8,08
		15758	3608,64	12,53	574198	7,19	5,34
		15824	<u>1995,84</u>	6,93	574264	4,7	2,23
		15890	2537,28	8,81	574330	4,86	3,95
		15956	1653,12	5,74	574396	2,63	3,11
		16021	1491,84	5,18	574461	2,63	2,55
		16088	1578,24	5,48	574528	3,32	2,16
		16154	15050,88	52,26	574594	22,53	29,73
		16219	14702,40	51,05	574659	27,18	23,87
		16286	14685,12	50,99	574726	30,66	20,33
		16351	14996,16	52,07	574791	32,7	19,37
		16417	14869,44	51,63	574857	32,45	19,18
		16483	10897,92	37,84	574923	17,96	19,88
		16549	2082,24	7,23	574989	4,57	2,66
		16615	2312,64	8,03	575055	4,33	3,7
		16681	1958,40	6,80	575121	4,2	2,6
		16746	1428,48	4,96	575186	3,31	1,65
		16813	2485,44	8,63	575253	4,56	4,07
		16879	2056,32	7,14	575319	4,59	2,55
		16944	3430,08	11,91	575384	8,48	3,43
		17011	1941,12	6,74	575451	3,54	3,2
		17076	3908,16	13,57	575516	10,69	2,88
		17143	1275,84	4,43	575583	2,95	1,48
		17208	3337,92	11,59	575648	9,1	2,49
		17274	2240,64	7,78	575714	5,85	1,93
se		17340	2076,48	7,21	575780	4,22	2,99
Pas	9225	17406	1679,04	5,83	575846	3,09	2,74
30		17471	1918,08	6,66	575911	1,33	5,33
		17538	1632,96	5,67	575978	2,9	2,77
		17604	1854,72	6,44	576044	3,93	2,51
		17669	6494,40	22,55	576109	11,62	10,93
		17736	6373,44	22,13	576176	13,64	8,49
		17801	6531,84	22,68	576241	14,72	7,96
		17867	6229,44	21,63	576307	11,88	9,75
		17932	5814,72	20,19	576372	13,13	7,06
		17999	6353,28	22,06	576439	11,62	10,44
		18064	5673,60	19,70	576504	10,56	9,14
		18131	5849,28	20,31	576571	7,04	13,27
		18196	6122,88	21,26	576636	7,21	14,05
		18262	7044,48	24,46	576702	10,78	13,68

10,01	10,35	576769	20,36	5863 <i>,</i> 68	18329		
10,06	15,32	576834	25,38	7309,44	18394		
8,48	13,43	576900	21,91	6310,08	18460		
8,25	20,02	576965	28,27	8141,76	18525		
9,43	17,49	577032	26,92	7752,96	18592		
8,52	18,22	577097	26,74	7701,12	18657		
13,83	18,2	577163	32,03	9224,64	18723		
11,97	13,86	577229	25,83	7439,04	18789		
14,28	13,49	577295	27,77	7997,76	18855		
1,69	2,1	577361	3,79	1091,52	18921		
2,4	3,56	577427	5,96	1716,48	18987		
2,56	3,79	577492	6,35	1828,80	19052		
2,61	3,37	577559	5,98	1722,24	19119		
3,41	6,39	577625	9,80	2822,40	19185		
2,35	2,04	577690	4,39	1264,32	19250		
19,82	34,99	577757	54,81	15785,28	19317		
19,37	32,77	577822	52,14	15016,32	19382		
21,53	29,58	577888	51,11	14719,68	19448		
24,37	25,3	577953	49,67	14304,96	19513		
26,4	18,99	578020	45,39	13072,32	19580		
26,59	17,09	578085	43,68	12579,84	19645		
24,94	18,8	578151	43,74	12597,12	19711		
21,84	23,25	578217	45,09	12985,92	19777		
18,41	27,71	578283	46,12	13282,56	19843		
5,58	8,84	578349	14,42	4152,96	19909		
3,56	6,24	578415	9,80	2822,40	19975		
4,69	4,11	578481	8,80	2534,40	20041		
5,7	3,05	578546	8,75	2520,00	20106		
7,97	7,02	578613	14,99	4317,12	20173		
4,67	5,86	578678	10,53	3032,64	20238		
2,11	1,54	578744	3,65	1051,20	20304		
4,85	1,43	578810	6,28	1808,64	20370		
7,1	1,9	578876	9,00	2592,00	20436		
5,06	2,91	578941	7,97	2295,36	20501		e
14,75	15,2	579008	29,95	8625,60	20568	9504	ass
10,47	16,43	579074	26,90	7747,20	20634	5504	с С
7,83	14,25	579139	22,08	6359,04	20699		V
5,58	7,8	579205	13,38	3853,44	20765		
10,89	9,9	579271	20,79	5987,52	20831		
13,48	13,24	579337	26,72	7695,36	20897		
8,47	8,55	579402	17,02	4901,76	20962		
5,72	6,11	579469	11,83	3407,04	21029		
8,69	8,14	579534	16,83	4847,04	21094		
10,42	15,04	579600	25,46	7332,48	21160		
9,11	16,61	579665	25,72	7407,36	21225		

6,89	16,66	579732	23,55	6782,40	21292		
10,74	22,26	579798	33,00	9504,00	21358		
10,89	20,84	579864	31,73	9138,24	21424		
11,96	13,54	579930	25,50	7344,00	21490		
13,44	6,05	579995	19,49	5613,12	21555		
7,81	5 <i>,</i> 97	580061	13,78	3968,64	21621		
4,7	6,21	580127	10,91	3142,08	21687		
4,23	1,88	580193	6,11	1759,68	21753		
3,63	2,38	580258	6,01	1730,88	21818		
6,42	4,88	580325	11,30	3254,40	21885		
4,64	9,16	580390	13,80	3974,40	21950		
3,04	1,88	580456	4,92	1416,96	22016		
3,58	1,72	580523	5,30	1526,40	22083		
3,42	6,75	580588	10,17	2928,96	22148		
2,55	3,15	580654	5,70	1641,60	22214		
2,7	3,29	580720	5,99	1725,12	22280		
2,59	4,72	580786	7,31	2105,28	22346		
1,76	3,66	580851	5,42	1560,96	22411		
4,62	2,31	580918	6,93	1995,84	22478		
3,69	4,14	580983	7,83	2255,04	22543		
3,39	7,58	581049	10,97	3159,36	22609		
2,93	11,55	581115	14,48	4170,24	22675		
2,93	6,32	581181	9,25	2664,00	22741		
2,46	2,66	581246	5,12	1474,56	22806		
3,46	2,8	581313	6,26	1802,88	22873		
4,48	6,9	581379	11,38	3277,44	22939		
1,82	3,46	581444	5,28	1520,64	23004		
1,8	2,56	581511	4,36	1255,68	23071		
6,31	6,52	581576	12,83	3695,04	23136		
9,91	6,68	581642	16,59	4777,92	23202		
8,58	7,69	581708	16,27	4685,76	23268		a
13,1	12,91	581774	26,01	7490,88	23334	0022	ISS
10,84	20,49	581839	31,33	9023,04	23399	9023	٥P
5,93	14,65	581906	20,58	5927,04	23466		5
3,82	6,28	581971	10,10	2908,80	23531		
7,71	7,85	582037	15,56	4481,28	23597		
10,75	12,18	582103	22,93	6603,84	23663		
7,14	6,57	582169	13,71	3948,48	23729		
5,17	5,97	582235	11,14	3208,32	23795		
8,01	7,82	582300	15,83	4559,04	23860		
8,39	9,04	582366	17,43	5019,84	23926		
6,35	9,92	582432	16,27	4685,76	23992		
7,89	14,28	582498	22,17	6384,96	24058		
9,05	17,29	582563	26,34	7585,92	24123		
4,6	11,72	582630	16,32	4700,16	24190		

Apêndice J – Detalhes dos Picos de correntes ao longo dos ensaios, demonstrando a paridade das correntes da linha 1 (série 1 em azul) e da linha 2 (série 2 em vermelho).

Potências Elétr	icas Má	kimas r	nedida	s nas er	passac n Watt	las (Pe s - 2ª E) e as l tapa d	Potênc e Ensa	ias de ios	Corte	teórica	s (Pc)		va	lores
Condição do Ev	nealo	1ª Pa 35mm/:	issada 1363rpm	2ª Pa 30mm/	issada 1590rpm	3ª Pa 25mm/:	ssada 1909rpm	4ª Pa 20mm/	issada 2386rpm	5ª Pa 15mm/	assada 3182rpm	6ª Pa 10mm/	assada 4773rpm	7ª Pa 5mm/5	assada 5000rpm
	lisalo	Pe	Pc	Pe	Pc	Pe	Pc	Pe	Pc	Pe	Pc	Pe	Pc	Pe	Pc
Vazio		1304	0	1379	0	1606	o	2092	0	3058	0	4566	0	4784	0
1 - Alumínio d38,1	Vazio	1506	0	1729	0	1955	0	2592	0	3632	0	5453	0	6009	0
2 - Alumínio d38 1	Vazio	1700	0	1483	0	1648	0	2196	0	2977	0	4691	0	4788	0
2 - Alumino 038,1	Usinagem	\	310	1871	500	3577	500	3745	500	4604	500	7400	500	6063	263
3 - Alumínio d38,1	Usinagem	2471	310	3238	500	3704	500	3735	500	5213	500	6569	500	5965	263
4 - Alumínio d38.1	Vazio	1425	0	1600	0	1693	0	2051	0	3117	0	4801	0	4729	0
	Usinagem	2467	310	3360	500	3754	500	5056	500	5926	500	5991	500	5771	263
5 - Alumínio d38,1	Usinagem	2507	310	3503	500	3628	500	5013	500	5302	500	6000	500	5630	263
6 - Alumínio d38.1	Vazio	1356	0	1497	0	1769	0	2055	0	2829	0	4763	0	4663	0
	Usinagem	2328	310	3862	500	3666	500	3869	500	4789	500	6097	500	5751	263
7 - Alumínio d38,1	Usinagem	2663	310	4090	500	3615	500	4913	500	4406	500	6150	500	5623	263
8 - Bronze Al d25.4	Vazio	1390	0	1435	0	1627	0	1988	0	2753	0	3993	0	4370	0
	Usinagem	1297	\	1201		1466		5058	1063	5994	1063	7337	1063	6424	560
9 - Bronze Al d25,4	Usinagem	1287	1	\	1	1400	\	5161	1063	5881	1063	7706	1063	6534	560
10 - Bronze Al d25.4	Vazio	1200	0	1307	0	1562	0	1843	0	2742	0	3955	0	4187	0
	Usinagem	1222	\	1442		1615	\	5152	1063	2657	1063	7444	1063	6467	560
11 - Bronze Al d25,4	Usinagem	\	Ň	1442	Ň	1015	1	5222	1063	6012	1063	7752	1063	6343	560
12 - Bronze Al d25.4	Vazio	1258	0	1436	0	1505	0	1905	0	2654	0	4062	0	4142	0
	Usinagem Vazio	1260	0	1381	0	1475	0	5344 1937	1063 0	2774	1063	7418	1063	6566 4232	560 0
13 - Bronze Al d25,4	Usinagem	\	١	1	١	1	1	5044	1063	6086	1063	7621	1063	6329	560
14 - Bronze Al d25,4	Vazio	1280	0	1287	0	1475	0	1936	1063	2685	0	3948	0	4147	0
	Vazio	1412	0	1354	0	1548	0	1898	0	2747	0	3905	0	4182	0
15 - Bronze Al d25,4	Usinagem	\	\	\	\	1	\	5043	1063	6074	1063	7411	1063	6436	560
16 - Bronze Al d25,4	Vazio	1337	0	1530	0	1572	0	1966	0	2937	0	3880	0	4259	0
	Vazio	1253	0	1353	0	1507	0	1963	0	2756	0	3888	0	4244	0
17 - Bronze Al d25,4	Usinagem	١.	١	١	\	١	١	5147	1063	6041	1063	7230	1063	6218	560
18 - Bronze Al d25,4	Vazio	1361	0	1422	0	1584	0	2000	0	2661	0	3815	0	4196	0
10 4 020 121 0	Vazio	1260	0	1327	0	1612	0	2106	0	2846	0	3993	0	4212	0
19 - AÇO P20 d31,8	Usinagem	١	١	2078	563	5657	1563	6266	1563	6995	1563	8252	1563	6832	823
20 - Aço P20 d31,8	Vazio	1292	0	1316	0	1478 5914	0	2147	0	2761	0	3895	0	4244 6860	0
21 400 020 421 0	Vazio	1218	0	1425	0	1543	0	1902	0	2956	0	3857	0	4227	0
21 - Aço P20 031,8	Usinagem	١	١	2174	563	5651	1563	5884	1563	7017	1563	8280	1563	6659	823
22 - Aço P20 d31,8	Vazio	1324	0	1299	0	1528	0	1958	0	2732	0	3733	1563	4171	0
22 Ann D20 d21 9	Vazio	1206	0	1325	0	1464	0	1829	0	2510	0	3803	0	4185	0
23 - AÇO P20 031,8	Usinagem	\	١	2068	563	5569	1563	5978	1563	6901	1563	8515	1563	6696	823
24 - Aço P20 d31,8	Vazio	1261	0	2726	0 563	1472 5749	0	1877 6138	0	2682	0	3839	0	4211	0 823
25 - Aco Inov d21 9	Vazio	1368	0	1385	0	1548	0	1916	0	2679	0	3576	0	4186	0
23 - Aço mox us1,8	Usinagem	\	\	2071	518	5185	1438	5631	1438	6244	1438	7535	1438	6520	757
26 - Aço Inox d31,8	Vazio	1286	0	2099	0 518	1505 5044	0	2103	0	2867 6129	0	3922	0	4222	0 757
27 - Aco Inov d21 9	Vazio	1270	0	1553	0	1517	0	2000	0	2781	0	3916	0	3959	0
27 - Aço mox us1,8	Usinagem	1	١	2216	518	5095	1438	5429	1438	6567	1438	7572	1438	6563	757
28 - Aço Inox d31,8	Vazio	1247	0	1463 2099	0 518	1488 5064	0	2059	0	2673	0	4038	0	4100 6670	0
20 1 22 1 22 2 2	Vazio	1175	0	1317	0	1534	0	1944	0	2747	0	3918	0	4142	0
20 Aço mox d31,0	Usinagem	1	1	2039	518	5170	1438	5432	1438	6180	1438	7570	1438	6826	757

Apêndice K – Resultados da segunda etapa de ensaios

	Cálculo dos Valores	Médios das Potêr	ncias Elétricas me	didas para os dife	rentes materiais (em usinagem (Wa	itts)
	1706	3669	3821	3710	4748	6497	6119
	\	1871	3577	3745	4604	7400	6063
Anna shara an an Da	2471	3238	3704	3735	5213	6569	5965
Amostragem Pe	2467	3360	3754	5056	5926	5991	5771
Aluminio	2507	3503	3628	5013	5302	6000	5630
	2328	3862	3666	3869	4789	6097	5751
	2663	4090	3615	4913	4406	6150	5623
Pe média (W) Alumínio	2357	3370	3681	4292	4998	6386	5846
	λ.	١)	5058	5994	7337	6424
	λ	λ	\	5161	5881	7706	6534
	λ	١.	λ.	5152	5967	7444	6467
	λ	\	\	5222	6012	7752	6343
Amostragem Pe	1	1	λ	5344	7103	7418	6566
Bronze-Alumínio (UNS	\	1	\	5044	6086	7621	6329
C63000)	λ	1	١	5125	6296	7498	6485
	λ	/	\	5043	6074	7411	6436
	١	λ.	λ.	5083	6107	7693	6259
	\	1	\	5147	6041	7230	6218
	١	λ.	N	5240	6345	7441	6220
Pe média (W) Bronze- Alumínio	λ	λ	X	5147	6173	7505	6389
	1	2078	5657	6266	6995	8252	6832
	١	2128	5914	5983	6667	8097	6860
Amostragem Pe Aço-	1	2174	5651	5884	7017	8280	6659
ferramenta P20	λ	2220	5552	5900	6588	8064	7084
	λ	2068	5569	5978	6901	8515	6696
	λ	2226	5749	6138	6594	7952	6790
Pe média (W) Aço- ferramenta P20	٨	2149	5682	6025	6794	8193	6820
	1	2071	5185	5631	6244	7535	6520
Amostragom Bo Aco	1	2099	5044	5492	6129	7630	6557
Inoxidável 204	1	2216	5095	5429	6567	7572	6563
moxidaver 504	1	2099	5064	5516	6104	8012	6670
	1	2039	5170	5432	6180	7570	6826
Pe média (W) Aço Inoxidável 304	λ	2105	5112	5500	6245	7664	6627

	Cálculo dos Valo	res Médios das Po	tências Elétricas	medidas para os c	liferentes avanços	em vazio (Watts)		
	1304	1379	1606	2092	3058	4566	4784	
	1506	1729	1955	2592	3632	5453	6009	
	1311	1483	1648	2196	2977	4691	4788	
	1451	1514	1799	2095	3237	4547	4816	
	1425	1600	1693	2051	3117	4801	4729	
	1409	1419	1648	2094	2901	4502	4601	
	1356	1497	1769	2055	2829	4763	4663	
	1295	1350	1710	1984	2763	4279	4621	
	1390	1435	1627	1988	2753	3993	4370	
	1287	1391	1466	1958	2594	4045	4391	
	1200	1307	1562	1843	2742	3955	4187	
	1233	1442	1615	1944	2657	3983	4268	
	1258	1436	1505	1905	2654	4062	4142	
	1260	1381	1475	1937	2774	3811	4232	
Amostragem Pe	1280	1287	1475	1936	2685	3948	4147	
Avanços em vazio	1412	1354	1548	1898	2747	3905	4182	
	1337	1530	1572	1966	2937	3880	4259	
	1253	1353	1507	1963	2756	3888	4244	
	1361	1422	1584	2000	2661	3815	4196	
	1260	1327	1612	2106	2846	3993	4212	
	1292	1316	1478	2147	2761	3895	4244	
	1218	1425	1543	1902	2956	3857	4227	
	1324	1299	1528	1958	2732	3733	4171	
	1206	1325	1464	1829	2510	3803	4185	
	1261	1404	1472	1877	2682	3839	4211	
	1368	1385	1548	1916	2679	3576	4186	
	1286	1462	1505	2103	2867	3922	4222	
	1270	1553	1517	2000	2781	3916	3959	
	1247	1463	1488	2059	2673	4038	4100	
	1175	1317	1534	1944	2747	3918	4142	
Pe média (W) Avanços em vazio	1308	1420	1582	2011	2824	4113	4383	